首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The aim of this study were to detect the gyrA, parC and marR mutations and qnr genes (qnrA, qnrB and qnrS) in 120 strains of Escherichia coli isolated from animals. European Committee on Antimicrobial Susceptibility Testing and Clinical Laboratory Standards Institute disc diffusion and minimum inhibitory concentration (MIC) tests, respectively, were used to determine fluoroquinolone (FQ) resistance, and molecular methods were used to detect the mutations and the genes. E coli isolates with an MIC of ≥8 mg/l had mutation at Ser-80 in parC in addition to mutations at Ser-83, Asp-87 or both in gyrA. The nucleotide change was detected in marR (Ser-3?→?Asn, Ala-53?→?Glu, Gly-103?→?Ser, Tyr-137?→?His). Only four E coli isolates (3.3 per cent) contained qnrA and qnrS, and qnrB was not detected. Two E coli isolates from healthy calves also contained qnrA and qnrS. The MICs of enrofloxacin and danofloxacin for qnr-containing E coli isolates ranged from 32 mg/l to 256 mg/l. The results of this study indicated that the FQ-resistant E coli isolates presented an alteration in gyrA (Ser-83?→?Leu, Asp-87?→?Asn) and parC (Ser-80?→?Ile) with high MICs (8-256 mg/l), and there was a low prevalence of qnr genes among E coli isolated from animals.  相似文献   

2.
Nine quinolone resistant (minimal inhibitory concentration [MIC] was > 32 microg/mL for nalidixic acid, > 1 microg/mL for ciprofloxacin) isolates of Escherichia coli have been found in wild birds with septicemia. All of the isolates were aerobactin positive. The mechanisms of resistance were characterised by sequencing the quinolone resistance-determining region (QRDR) of the gyrA, gyrB, parC, and parE genes. Sequence analysis of the gyrA gene in all isolates identified only 1 nucleotide substitution at codon Serine-83 for Leucine-83. Sequence analysis of the gyrB, parC, and parE QRDR genes revealed no mutations in any of the isolates. This study was conducted to determine the importance of these genes in the susceptibility of E. coli strains isolated from wild birds to quinolones.  相似文献   

3.
鸡大肠杆菌O78对喹诺酮类药物高耐药株的分子鉴定   总被引:1,自引:0,他引:1  
就临床分离的鸡大肠杆菌O78对喹诺酮类药物的最低抑菌浓度(MIC)进行了测定,得到对喹诺酮类药物有不同耐药水平的细菌23株。根据GenBank已公布的QRDRs序列,设计了分剐扩增gyrA、gyrB、parC和parE基因的4对引物,以筛选的23株耐药菌DNA为模板,进行了PCR扩增。序列分析及AcrA的Western blotting检测结果表明,临床分离的鸡大肠杆菌对喹诺酮类药物的耐药水平与GyrA和ParC的突变密切相关,而AcrAB外输泵的表达水平无显著变化。提示临床分离的鸡大肠杆菌O78的耐药水平与喹诺酮类药物的选择性压力有关,它诱导了DNA旋转酶和拓扑异构酶IV的基因突变,可能不能激活AcrAB外输泵。  相似文献   

4.
为了解食品动物源沙门氏菌质粒介导喹诺酮类耐药性(Plasmid-mediated quinolone resistance,PMQR),采用微量肉汤稀释法和PCR方法,检测了316株食品动物源沙门氏菌对20种抗菌药物的敏感性,以及菌株中PMQR基因的携带率.结果显示:316株沙门氏菌对20种抗菌药物呈不同程度的耐药性,95.57%菌株为多重耐药菌;316株菌中未检出qnrA、qnrC、qnrD、qnrS和qepA基因,7.91%菌株检出qnrB基因,15.19%菌株检出aac(6 ′ )-Ib-cr基因,7.91%菌株检出oqxA基因,8.86%菌株检出oqxB基因,这是首次在沙门氏菌中发现oqxAB基因;98.11%PMQR阳性菌同时携带2种及以上的耐药基因,呈8~17耐的多重耐药性,其中以qnrB和aac(6′)-Ibcr基因型为主;53株PMQR阳性菌分属于5种不同的基因型,耐药表型或耐药基因型不同的菌株却有相同的PFGE谱型.本次检测的316株食品动物源沙门氏菌耐药较为严重;菌株主要携带qnrB、aac(6 ′ )-Ib-cr及oqxAB基因;不同来源菌株存在同一耐药克隆株的流行.  相似文献   

5.
为研究近年来新疆地区牛源大肠杆菌中质粒介导喹诺酮类药物耐药基因的分布及其对喹诺酮类抗生素的耐药情况,本研究于2016-2018年从新疆石河子、沙湾、奎屯、玛纳斯和伊犁5个地区12个规模化奶牛场分离出116株牛源大肠杆菌,药敏试验检测其耐药性,同时利用PCR扩增PMQR耐药基因。药敏试验结果显示,62.93%的菌株对氨苄西林耐药,耐药率最高。对链霉素、四环素、卡那霉素和恩诺沙星的耐药率依次为56.90%、54.31%、43.10%和42.24%。对头孢他啶和头孢噻肟的耐药率较低,分别为7.76%和11.21%。分离菌主要携带qnrA、qnrS和aac(6')-Ⅰb-cr 3种耐药基因;116株大肠杆菌中有31株携带PMQR的耐药基因,检出阳性率为26.72%,其中26株仅携带1种PMQR耐药基因,占所有菌株的22.41%,4株携带2种PMQR耐药基因,占所有菌株的3.45%,1株携带3种PMQR耐药基因,占所有菌株的0.86%。综上所述,新疆地区牛源大肠杆菌质粒介导喹诺酮类药物基因主要为qnrA、qnrS和aac(6')-Ⅰb-cr 3种,且对恩诺沙星、诺氟沙星、环丙沙星、左氧氟沙星均产生不同程度的耐药性。  相似文献   

6.
Thirty-seven fluoroquinolone-resistant Escherichia coli strains from ruminants (according to Clinical and Laboratory Standards Institute guidelines) were screened by molecular methods for mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes and for the presence of the qnrA gene. One of the strains studied was an enterohemorrhagic E. coli (EHEC) strain potentially pathogenic for humans. Three E. coli strains resistant to enrofloxacin (minimal inhibitory concentration [MIC] = 2 microg/ml) but not to ciprofloxacin (MIC = 1 microg/ml) presented single mutations in the gyrA and parC genes, while 34 strains resistant to both fluoroquinolones presented double and single mutations in gyrA and parC, respectively (31 strains), or double mutations in gyrA and parC (3 strains). The EHEC strain presented a double amino acid substitution in the GyrA protein (Ser-83-->Leu and Asp-87-->Gly) and a double amino acid substitution in the ParC protein (Gly-78-->Cys and Ser-80-->Arg), one of which has not been previously described. The present study shows that most of the mutations in the QRDR of the gyrA and parC genes of fluoroquinolone-resistant E. coli strains from ruminants are the same as those seen in E. coli strains from other animal species and humans and that there are no differences in mutation patterns in the QRDR of E. coli strains from healthy ruminants and those with diarrhea. No strains carried qnrA, which indicates that this gene does not play an important role in the selection of fluoroquinolone-resistant E. coli strains from ruminants.  相似文献   

7.
新疆猪源沙门氏菌耐药性及耐药基因检测   总被引:1,自引:0,他引:1  
为了解新疆某规模化养殖场猪源沙门氏菌对临床上常用抗菌药物的耐药情况,以及β-内酰胺酶、16S rRNA甲基化酶和质粒介导的喹诺酮耐药(plasmid mediated quinolone resistance,PMQR)基因的流行情况,本试验通过琼脂稀释法对分离的菌株进行最小抑菌浓度测定,PCR方法进行β-内酰胺酶blaTEM、blaCMY-2、blaCTX-M、blaLAP-1、blaKPC、blaOXA和blaSHV基因,16S rRNA甲基化酶基因armA和rmtB及PMQR类基因qnrA、qnrB、qnrC、qnrD、qnrS、qepA、oqxA、oqxB和aac(6')-Ib-cr的检测,确定阳性菌株,分析其携带的基因型与耐药表型之间的关系。分离的猪源沙门氏菌对环丙沙星和安普霉素耐药率最高,均为77.9%(102/131),耐药菌主要以8耐为主(29.0%,38/131)。从被检基因中检测出11种耐药基因,不同基因共存有24种类型,主要以blaTEM+blaOXA+qnrS+aac(6')-Ib-cr+oqxA+oqxB(27.6%,32/116);blaTEM+blaOXA+qnrS+oqxA+oqxB(24.1%,28/116);blaTEM+qnrS(18.0%,21/116)形式共存。该养殖场分离的沙门氏菌耐药现象严重,分离耐药菌株存在β-内酰胺酶、16S rRNA甲基化酶和PMQR类基因共存现象,提示应加强对β-内酰胺酶、16S rRNA甲基化酶和PMQR类因子的监控。  相似文献   

8.
The objective of this study was to investigate the resistance of Salmonella and prevalence of resistance genes isolated from a pig farm in Xinjiang, and their coexistence with the major β-lactamases, 16S rRNA methylation enzyme genes and PMQR. The minimum inhibitory concentrations of Salmonella isolated from the pig farms were determined by agar dilution method, PCR was used to detect blaTEM, blaCMY-2, blaCTX-M, blaLAP-1, blaKPC, blaOXA and blaSHV genes, 16S rRNA methylation enzyme genes armA and rmtB, and PMQR including qnrA, qnrB, qnrC, qnrD, qnrS, qepA, oqxA, oqxB and aac(6')-Ib genes. The positive strains were performed by using DNA sequencing to determine the purpose of the belt. The result showed that resistant rate of Salmonella isolates from swine were highest to ciprofloxacin and apramycin sulfate (77.9%, 102/131). Resistant mainly based on 8 kinds of drug resistance (29.0%, 38/131), 11 kinds of resistance genes were detection, the coexistence of different genotypes had 24 types. The main types were blaTEM+blaOXA+qnrS+aac(6')-Ib-cr+oqxA+oqxB (27.6%, 32/116), blaTEM+blaOXA+qnrS+oqxA+oqxB (24.1%, 28/116) and blaTEM+qnrS (18.0%, 21/116). The Salmonella isolated from the farm had phenomenon seriously resistance, it coexisted with the main β-lactamase, 16S rRNA methylation enzyme genes and PMQR factors. The result suggested that it should strengthen monitoring to the β-lactamase enzymes, 16S rRNA methylation enzyme genes and PMQR factors.  相似文献   

9.
为研究近年来山东省禽源致病性大肠杆菌中质粒介导喹诺酮类药物耐药(plasmid-mediated quinolone resistance,PMQR)基因的基因型分布,及其对喹诺酮类抗生素的耐药性的影响,分别采用针对qnrA、qnrB、qnrC、qnrD、qnrS、oqxA、oqxB与qepA 8个耐药基因的通用引物,对93株2012~2013年分离自山东省的禽源大肠杆菌进行PCR检测,并对其进行了5种喹诺酮类药物的药敏试验。结果表明山东省禽源大肠杆菌对5种喹诺酮类抗生素均产生了较高耐药性(50.54%~86.30%);PMQR基因携带率达到60.21%(56/93),其中26.88%(25/93)的菌株携带2种PMQR基因,1.07%(1/93)的菌株携带3种PMQR基因;qnrA、qnrB、qnrC、qnrD与qepA基因未被检测到,qnrS、oqxA和oqxB基因在山东省禽源致病性大肠杆菌中分布较为广泛,其检出率依次为22.58%(21/93)、40.86%(38/93)和24.73%(23/93)。  相似文献   

10.
OBJECTIVE: To investigate the development of enrofloxacin resistance among Escherichia coli isolates obtained from chickens by determining mutant-prevention concentrations (MPCs) and sequence the quinolone resistance-determining regions (QRDRs) of gyrA and parC genes in selected isolates. SAMPLE POPULATION: 15 chicken-derived E coli isolates. PROCEDURES: For all isolates, MPC and minimal inhibition concentration (MIC) of enrofloxacin were determined. The MPCs and maximum serum drug concentrations attained with enrofloxacin doses recommended for treatment of E coli infections in chickens were compared. Mutation frequencies and QRDR sequence changes in gyrA and parC were also determined. RESULTS: In 2 of 15 E coli strains, MPCs were low (0.016 and 0.062 microg/mL), MPC:MIC ratios were 2 and 4, and the GyrA and ParC proteins had no mutations. In 9 susceptible isolates with a GyrA point mutation, MPCs ranged from 2 to 16 microg/mL. For isolates with double mutations in GyrA and a single mutation in ParC, MPCs were > 32 microg/mL (several fold greater than the maximal plasma concentration of enrofloxacin in chickens); mutation frequencies were also much lower, compared with frequencies for single-mutation isolates. CONCLUSIONS AND CLINICAL RELEVANCE: For E coli infections of chickens, MPC appears to be useful for determining enrofloxacin-dosing strategies. The high MPC:MIC ratio may result in enrofloxacin-treatment failure in chickens infected with some wild-type gyrA E coli isolates despite the isolates' enrofloxacin susceptibility (MICs 0.125 to 1 microg/mL). For infections involving isolates with high MPCs, especially those containing mutations in gyrA and parC genes, treatment with combinations of antimicrobials should be adopted.  相似文献   

11.
旨在了解猪链球菌对氟喹诺酮类药物耐药性与parC、gyrA基因突变的相关性,通过微量稀释法测定34株猪链球菌对4种氟喹诺酮类药物的MIC值,采用PCR方法扩增并测序分析了临床分离的猪链球菌对氟唪诺酮类约物10株耐药株和9株敏感株的parC和gyrA基因喹诺酮耐药决定区(QRDRs).在氟喹诺酮类药物耐药菌株parC基因QRDRs发生Ser79→Phe、Arg 87→Leu的氨基酸突变,在4株高度耐药菌株gyrA基因QRDRs发生Arg66→Ser,Ser81→Arg氨基酸突变;当菌株对氟喹诺酮类药物敏感时,parC和gyrA基因的QRDR区均未有突变;而当MIC≥32 μg·L-1 时,parC的氨基酸发生了 Ser79→Phe的突变,同时发生gyrA氨基酸Arg66→Ser,Set81→Arg突变.结果表明,猪链球菌对氟喹诺酮类药物低水平类耐药是由parC单一位点突变引起,而高水平耐药是由parC和gyrA双位点突变引起.  相似文献   

12.
Recent data from the European and Hungarian Antimicrobial Resistance Monitoring Systems have indicated that the routine use of gentamicin in human and veterinary medicine frequently leads to the selection of gentamicin resistance in Escherichia coli. The aim of this study was to provide molecular characterization of gentamicin resistance in clinical and commensal E. coli strains representing humans and food producing animals by genotyping for antimicrobial resistance and virulence using a miniaturized microarray. All 50 strains tested proved to be multidrug resistant defined as resistance to three or more antimicrobial classes. Antimicrobial resistances genes such as aadA1-like, strB, bla(TEM), sul1 and tet(A) or tet(B), and corresponding phenotypes (streptomycin-, ampicillin-, sulfamethoxazole- and tetracycline resistance) were detected in >50% of isolates regardless of the host or clinical background. However, certain genes encoding gentamicin resistance such as aac(6')-Ib and ant(2″)-Ia as well as catB3-like genes for phenicol resistance were only detected in human isolates. Among virulence genes, the increased serum survival gene iss was predominant in all host groups. Although the majority of gentamicin resistant E. coli strains were characterized by diverse antimicrobial resistance, and virulence gene patterns, accentuated links between catB3-like, aac(6')-Ib, bla(CTX-M-1) and sat genes could be detected in human strains. Further resistance/virulence gene associations (tet(A) with iroN and iss) were detected in poultry strains. In conclusion, the simultaneous characterization of antimicrobial resistance and virulence genotypes of representative clinical and commensal strains of E. coli should be useful for the identification of emerging genotypes with human and or animal health implications.  相似文献   

13.
Quinolone-resistant (QR) mutants of Mycoplasma bovirhinis strain PG43 (type strain) were generated by stepwise selection in increasing concentrations of enrofloxacin (ENR). An alteration was found in the quinolone resistance-determining region (QRDR) of the parC gene coding for the ParC subunit of topoisomerase IV from these mutants, but not in the gyrA, gyrB, and parE gene coding for the GyrA and GyrB subunits of DNA gyrase and the ParE subunit of topoisomerase IV. Similarly, such an alteration in QRDR of parC was found in the field isolates of M. bovirhinis, which possessed various levels of QR. The substitution of leucine (Leu) by serine (Ser) at position 80 of QRDR of ParC was observed in both QR-mutants and QR-isolates. This is the first report of QR based on a point mutation of the parC gene in M. bovirhinis.  相似文献   

14.
The aim of this study was to determine antimicrobial resistance of Aeromonas hydrophila isolated from farmed Nile Tilapia. A total of 50 A. hydrophila isolates from clinical cases were screened for the presence of class 1, 2 and 3 integrons and all the strains resistant to enrofloxacin and/or ciprofloxacin (n=19) examined for mutation in the quinolone resistance-determining regions (QRDRs) of gyrA and parC. The intI1 gene was detected in 23 A. hydrophila strains (46%) but no intl2 and intl3 were detected. Among these, 14 isolates (60.8%) carried gene cassettes inserted in variable regions i.e., partial aadA2, aadA2, dfrA1-orfC and dfrA12-aadA2, of which the most common gene cassette array was dfrA12-aadA2 (26.09%). Conjugal transfer of class 1 integrons with resistance gene array was detected. All the A. hydrophila strains resistant to enrofloxacin and/or ciprofloxacin possessed mutations in the QRDRs of gyrA and parC. Only a Ser-83-Ile substitution was identified in GyrA and only a Ser-80-Ile amino change was found in ParC. The data confirms that A. hydrophila from farm-raised Nile Telapia serve as a reservoir for antimicrobial resistance determinants.  相似文献   

15.
选择11株动物源沙门菌(包括6种血清型)进行环丙沙星耐药性体外诱导.应用变性高效液相色谱(DH-PLC)对11株诱导株不同诱导阶段的靶基因gyrA、gyrB、parC、parE的喹诺酮耐药决定区(QRDR)和mar操纵子基因marO、marR、marA、marB、soxR、soxS及外排泵acrAB的抑制基因acrR(包括启动子区)进行基因突变筛选,并对筛选出的突变基因进行测序确证.结果显示,6种血清型沙门菌在诱导过程中,GyrA突变集中在S83F和/或D87G,marR、soxR、acrR均出现新突变,提示在环丙沙星诱导压力下,因靶基因和调控基因突变使耐药性不断增加.  相似文献   

16.
对2005年~2007年从豫北地区临床分离的377株鸡源大肠杆菌进行生化鉴定,MIC值测定。被测菌株对氟喹诺酮类(FQs)药物恩诺沙星、环丙沙星和诺氟沙星均呈严重耐药,耐药率分别为94.9%、93.9%、94.9%。选取对恩诺沙星耐药(MIC>32 μg/ml)的235株大肠杆菌进行qnr基因的分子检测,结果显示仅有1株大肠杆菌(MIC=128 μg/ml)呈qnr基因阳性,经测序分析该基因命名为qnrA。  相似文献   

17.
Ninety-five avian pathogenic Escherichia coli (APEC) isolates recovered from diagnosed cases of avian colibacillosis from North Georgia between 1996 and 2000 were serotyped and examined for typical virulence-factors, susceptibility to antimicrobials of human and veterinary significance, and genetic relatedness. Twenty different serotypes were identified, with O78 being the most common (12%). The majority of the avian E. coli isolates (60%), however, were non-typeable with standard O antisera. Eighty-four percent of isolates were PCR positive for the temperature-sensitive hemagglutinin (tsh) gene and 86% positive for the increased serum survival (iss) gene. Multiple antimicrobial-resistant phenotypes (> or =3 antimicrobials) were observed in 92% of E. coli isolates, with the majority of isolates displaying resistance to sulfamethoxazole (93%), tetracycline (87%), streptomycin (86%), gentamicin (69%), and nalidixic acid (59%). Fifty-six E. coli isolates displaying resistance to nalidixic acid were co-resistant to difloxacin (57%), enrofloxacin (16%), gatifloxacin (2%), and levofloxacin (2%). DNA sequencing revealed point mutations in gyrA (Ser83-Leu, Asp87-Tyr, Asp87-Gly, Asp87-Ala), gyrB (Glu466-Asp, Asp426-Thr), and parC (Ser80-Ile, Ser80-Arg). No mutations were observed in parE. Twelve of the quinolone-resistant E. coli isolates were tolerant to cyclohexane, a marker for upregulation of the acrAB multi-drug resistance efflux pump. Quinolone-resistant isolates were further genetically characterized via ribotyping. Twenty-two distinct ribogroups were identified, with 61% of isolates clustering into four major ribogroups, indicating that quinolone resistance has emerged among multiple avian pathogenic E. coli serogroups and chromosomal backgrounds.  相似文献   

18.
本研究旨在探讨不同血清型沙门氏菌在环丙沙星抗生素压力下突变频率及在耐药发展过程中靶位基因突变、外排泵及调控基因表达的差异。选取临床分离的印第安纳型、肠炎型和鼠伤寒型沙门氏菌的敏感菌株,在环丙沙星压力下诱导耐药突变,分别获得一系列不同程度的耐药突变株。分别检测不同血清型沙门氏菌突变株的突变频率、靶位基因喹诺酮耐药决定区(QRDRs)和外排泵调控基因ramR-ramA突变及外排泵相关基因的表达水平;同时检测了母株在羰基氰化物间氯苯腙(CCCP)存在情况下环丙沙星药物的蓄积浓度,以确定母株是否存在外排泵的作用。结果表明,在环丙沙星压力下,印第安纳型沙门氏菌较肠炎型和鼠伤寒型有更高的突变频率,易获得耐药株;印第安纳血清型菌株耐药性的获得主要是由于靶位基因gyrA发生单突变,协同外排泵外排作用增强而获得高水平耐药;肠炎型沙门氏菌耐药性获得主要是由于靶位基因gyrA发生83和87位双位点突变,并随着gyrB和parC基因的多位点同时突变而获得高水平耐药,耐药性的发展过程中没有外排泵作用参与;而鼠伤寒沙门氏菌在抗生素压力下不易发展成耐药菌,耐药性发生主要是由于靶位基因gyrB发生突变,而伴随parC基因突变及微弱的外排泵作用导致耐药水平增加。  相似文献   

19.
沙门氏菌耐药株gyrA基因和parC基因突变特征分析   总被引:3,自引:0,他引:3  
提取沙门氏菌染色体DNA,设计引物扩增gyrA基因和parC基因片段,克隆测序寻找耐药菌株的突变位点,通过系统的比较,分析氟喹诺酮类药物(以环丙沙星为代表)对各沙门氏菌MIC和耐药突变位点之间的关系。通过对耐药突变位点的研究,可以为下一步研究耐药性监测的快速方法提供理论基础。  相似文献   

20.
Proteus spp. are widely recognized as opportunistic pathogens causing urinary tract and septic infections in humans and animals. The aim of this study was to investigate the prevalence of plasmid-mediated quinolone resistance genes and mutations in the quinolone resistance determining region in association with the detection of quinolone susceptibility of 24 strains of pet turtle-borne Proteus spp. Susceptibility of 4 antimicrobials including nalidixic acid, ciprofloxacin, ofloxacin, and levofloxacin was examined by disk diffusion and minimum inhibitory concentration test. Six isolates were resistant to nalidixic acid showing either intermediate resistance or resistance to other quinolones. All nalidixic acid, resistant isolates harbored mutations in gyrB (N440T/A401G/Q411S). Two of the isolates had both gyrA (S83I) and parC (S80I) mutations. Twenty-one isolates were positive for the presence of plasmid-mediated quinolone resistance genes; the qnrD gene had the highest prevalence with 19 (79.2%), while qnrS, qnrA, qnrB, and aac(6′), Ib-cr genes were present in 9 (37.5%), 2 (8.3%), 1 (4.2%), and 11 (45.8%) isolates, respectively. These results suggest that pet turtle-associated Proteus spp. should be considered a potential source of antimicrobial resistance determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号