首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用RT-PCR方法扩增并克隆麦洼牦牛G蛋白信号转导调节因子5(regulator of G protein signaling 5,RGS5)基因序列,利用ClustalX 1.83和Mega 5.0软件构建系统进化树,并选用多种生物信息学软件进行序列分析和蛋白结构预测.结果表明,所得麦洼牦牛RGS5基因长度为863 bp,包含1个546 bp的完整开放阅读框,编码181个氨基酸,GenBank登录号为KJ867514.系统进化树分析发现,麦洼牦牛RGS5氨基酸序列与普通牛亲缘关系最近,其次是山羊和绵羊.RGS5基因编码的蛋白质分子质量为20.94 ku,理论等电点(PI)为6.35,它是一种以α-螺旋为主,不含信号肽的非跨膜、不稳定性蛋白.三级结构预测显示,麦洼牦牛与人RGS5蛋白三级结构相似性高达90.51%.以上结果为深入研究RGS蛋白功能积累科学资料.  相似文献   

2.
【目的】 从基因组比对及密码子偏性角度分析牦牛与其他牛亚科动物X染色体,有助于了解牦牛品种差异及系统进化地位,为其适应高原低压低氧环境和密码子优化提供参考。【方法】 以牦牛X染色体参考基因编码区序列为参考,与普通牛和江河型水牛X染色体参考基因编码区序列进行基因组比对和基因共线性分析,同时进行基因注释,对过滤后的编码区文件进行相对同义密码子使用频率(RSCU)、ENC-plot、PR2-plot和最优密码子确定等偏性分析。【结果】 在牦牛X染色体基因编码区发现了参与气管收缩、肺部呼吸及机体代谢等基因与普通牛和水牛存在差异,如KLHL13、CENPIPGK1等基因;共线性显示长段由强选择压和突变压下表现出的交换线性区域;密码子分析中3种牛亚科动物密码子使用偏性相似,偏性均较弱,均偏向G/C结尾;强偏性密码子(RSCU≥1.5)均为CUG、GUG、AGA、AGG和UGA;牦牛、普通牛和水牛分别筛选出16、13和9个最优密码子,均以A/U结尾。【结论】 牦牛与普通牛、水牛相比面临了更大的选择压力,累计的变异程度更大,三者的密码子偏性受到自然选择作用均大于突变作用。研究结果为牦牛的遗传育种、密码子优化和遗传资源开发利用提供参考。  相似文献   

3.
根据GenBank中普通牛生长分化因子9(GDF-9)基因序列(AF 307092)设计1对引物,以麦洼牦牛卵母细胞总RNA为模板,通过RT-PCR技术对牦牛GDF-9基因cDNA进行克隆测序和序列分析.结果表明:所克隆的1399 bp片段为预期的牦牛GDF-9基因cDNA序列,包含由2个外显子组成的全编码区和3′-下游部分序列.牦牛GDF-9基因编码区核苷酸序列长度为1362 bp,编码453个氨基酸,与GenBank中报道的普通牛、水牛、绵羊、山羊相应序列一致,而与人和黑猩猩存在差异.和普通牛相比,牦牛GDF-9基因编码区存在1处碱基转换(C→T),导致相应的氨基酸由丙氨酸(A)转换为缬氨酸(V).牦牛与普通牛、水牛、绵羊、山羊、人和黑猩猩的核苷酸同源性分别为99.9%、98.4%、97.0%、96.8%、85.6%和85.1%;氨基酸同源性分别为99.8%、97.1%、95.1%、95.4%、79.4%和79.5%.利用NJ法和MP法以该基因编码区核苷酸序列构建的物种间分子系统进化树结果基本一致,即牦牛与普通牛先聚为一类,再与水牛聚为一类,而后与绵羊和山羊聚为一类,最后与人和黑猩猩聚为一类.该聚类结果与物种间遗传距离大小一致,也与各物种在动物学上的分类相吻合,表明GDF-9基因编码区适用于构建物种间系统进化树.  相似文献   

4.
 克隆测序了牦牛、犏牛TSPY基因的编码区全序列,并用生物信息学软件分析了该基因的编码区序列、蛋白结构和进化关系。结果表明,牦牛和犏牛TSPY基因编码区序列长度均为954 bp,编码317个氨基酸,牦牛与普通牛TSPY基因序列的一致性分别为98.95%,犏牛与牦牛、普通牛TSPY基因序列的一致性分别为98.95%、99.79%,杂交后代犏牛与亲本序列差异表现在第113位核酸位点发生了改变(T→T→C),导致第38位氨基酸发生变化(V→V→A)。牦牛和犏牛TSPY蛋白含有TSPY家族典型的SET/NAP保守结构域,与人、鼠TSPY蛋白结构域一致,推测牦牛和犏牛TSPY蛋白在雄性减数分裂过程中参与了精原细胞和初级精母细胞的调节。  相似文献   

5.
SRY是Y染色体上具体决定生物雄性性别的基因片段,是多数哺乳动物性别决定基因之一。本试验采用克隆测序SRY基因并结合生物信息学对其序列进行分析,利用软件Codon W分析麦洼牦牛、普通牛、绵羊、山羊、猪、小鼠、鸡和人该基因编码区的密码子偏好性。克隆测序得到SRY基因序列含1个690 bp的开放阅读框,共编码229个氨基酸;其编码区核苷酸序列与普通牛、绵羊、山羊、猪、小鼠、鸡、人相应序列间的一致性分别为99.9%、93.9%、91.2%、76.5%、43.3%、21.4%、69.1%。经聚类分析,麦洼牦牛首先与普通牛聚在一起,绵羊与山羊聚为一类,这两类相聚后再依次与猪、人、小鼠相聚,最后与鸡聚为一类,其结果与以往的生物学分类结果一致。该基因编码的蛋白质分子式为C1155H1827N351O348S11,相对分子质量为2655.0,理论等电点PI为9.55,亲水性平均数为-0.855。其密码子偏好性分析显示,T3s为0.2905、C3s为0.3240、A3s为0.3728、G3s为0.2963,第3位碱基中出现G和C占第3位碱基总量的48%,同义密码子数为61。上述数据表明麦洼牦牛SRY基因编码序列与普通牛、绵羊、山羊、猪、人具有较高的一致性,在物种进化过程中较为保守。该基因对含A的密码子有较高的偏爱性,尽量避开以G结尾的密码子,且其所编码的蛋白质为亲水性蛋白。  相似文献   

6.
克隆测序了牦牛、犏牛TSPY基因的编码区全序列,并用生物信息学软件分析了该基因的编码区序列、蛋白结构和进化关系.结果表明,牦牛和犏牛TSPY基因编码区序列长度均为954 bp,编码317个氨基酸,牦牛与普通牛TSPY基因序列的一致性分别为98.95%,犏牛与牦牛、普通牛TSPY基因序列的一致性分别为98.95%、99.79%,杂交后代犏牛与亲本序列差异表现在第113位核酸位点发生了改变(T→T→C),导致第38位氨基酸发生变化(V→V→A).牦牛和犏牛TSPY蛋白含有TSPY家族典型的SET/NAP保守结构域,与人、鼠TSPY蛋白结构域一致,推测牦牛和犏牛TSPY蛋白在雄性减数分裂过程中参与了精原细胞和初级精母细胞的调节.  相似文献   

7.
为了研究牦牛ANT4在脑组织中的表达情况,试验通过RT-PCR技术克隆牦牛SLC25A31基因的cDNA序列,并利用DNAMAN、MAGA4、SWISS-MODEL、ExPASy等生物信息学软件系统对其进行分析。结果表明:扩增出的牦牛SLC25A31基因的编码区长972 bp,编码323个氨基酸;与普通牛、鼠和人相应基因核苷酸序列进行比对,序列一致性分别为99.28%、84.88%和89.81%;其编码蛋白分子质量为35.695 ku,含多个修饰位点。说明SLC25A31基因的CDS序列及其表达蛋白的结构在高原牦牛与普通牛间并无明显差异,保守性极强;并且通常在睾丸中表达的ANT4在高原牦牛脑组织中也能表达。  相似文献   

8.
中国牛亚科家畜GH基因编码区序列的遗传变异研究   总被引:2,自引:0,他引:2  
采用PCR产物直接双向测序法,分段扩增普通牛、瘤牛、牦牛、大额牛和亚洲水牛共5个牛种的GH基因,并拼接成编码区全序列,分析中国牛亚科家畜不同牛种GH基因编码区序列变异及其分子进化特征。结果表明,牛GH基因编码区序列全长654bp,种间核苷酸突变率在0.1%~1.84%。5个牛种编码区序列定义了10种单倍型,瘤牛的单倍型多样性最高,大额牛和水牛均无单倍型多样性。GH基因编码区序列的密码子使用存在偏倚性,共发现了25个偏好性密码子。核苷酸的替代以转换为主,转换明显高于颠换,转换/颠换比为3.0。非同义突变位点远远少于同义突变位点,同义与非同义替代发生的速率比都小于或等于1,表明GH基因编码区序列不受达尔文正选择的影响。以GH基因单倍型序列为基础的分子进化树表明,水牛与普通牛、瘤牛、牦牛、大额牛间分化很明显;普通牛、瘤牛、牦牛、大额牛间序列分化并不明显,并且它们共同拥有一条相同的祖先核苷酸序列。说明中国牛亚科家畜GH基因编码区序列的变异相当贫乏,并且由于功能的约束表现得相当保守,进化速率相当缓慢。  相似文献   

9.
利用RT-PCR方法成功克隆UCP3基因,对其核苷酸序列及氨基酸序列进行生物学在线分析。结果表明,类乌齐牦牛UCP3基因CDS区序列长为936bp,A、G、C和T平均含量分别为20.83%、28.63%、31.09%和19.44%;与普通牛UCP3基因CDS区序列一致性高达99%;共发现碱基突变位点6个,其中同义突变4个,反义突变2个。UCP3基因共编码311个氨基酸,分子质量为34.18ku,理论等电位点9.53;其主要分布在线粒体内膜上,为非分泌蛋白;具有α-螺旋、无规则卷曲、延伸链、β-转角等结构。由系统进化树可知,类乌齐牦牛与野牦牛最接近,与普通牛次之。  相似文献   

10.
为了研究西藏牦牛ATGL基因的理化特性及分子结构,试验采用PCR扩增和DNA测序技术以及生物信息学分析软件对西藏类乌齐牦牛ATGL基因进行克隆测序和生物信息学分析。结果表明:西藏类乌齐牦牛ATGL基因编码区全长为1 461 bp,可编码486个氨基酸,其中A、T、G、C碱基含量分别为17.2%、17.9%29.0%、35.9%,A+T为35.1%,G+C为64.9%;相对分子质量为53 417.9,理论等电点为6.83,在构成该蛋白所编码的氨基酸中亮氨酸(Leu)和脯氨酸(Pro)的含量最高,分别为13.4%和9.5%,总的带正电(Arg+Lys)和负电(Asp+Glu)残基分别为46和47;西藏类乌齐牦牛ATGL基因编码区核苷酸序列与普通牛、野猪、人、绵羊、山羊、绿头鸭、原鸡、小家鼠的核酸序列一致性分别为99.58%、87.52%、87.78%、96.26%、95.93%、67.63%、64.44%、82.65%;西藏类乌齐牦牛ATGL基因编码氨基酸序列与普通牛、野猪、人、绵羊、山羊、绿头鸭、原鸡、小家鼠的氨基酸序列一致性分别为99.79%、87.45%、87.66%、95.06%、96.09%、73.14%、69.56%、87.53%;ATGL蛋白为不稳定的跨膜蛋白,无信号肽;其二级结构主要以α-螺旋、β-折叠以及无规卷曲为主,其中94个氨基酸残基参与了16个α-螺旋的形成(占39.11%),35个氨基酸残基参与了9个β-折叠的形成;在三级结构中,其N端存在1个Patatin结构域。说明西藏牦牛ATGL基因在编码区序列存在明显的碱基偏倚性,在进化关系上ATGL基因无论核苷酸序列还是氨基酸序列都有较高的保守性。  相似文献   

11.
对大额牛HSL基因外显子Ⅰ部分序列进行PCR扩增、测序及氨基酸预测,并同其它牛种的资料进行了比对分析,构建了分子系统进化树。结果表明:大额牛其核苷酸序列与牦牛、普通牛、瘤牛、水牛间的同源性分别为99.6%、99.4%、99.2%、97.0%。相应的氨基酸序列大额牛与水牛的同源性为97.6%;与普通牛、瘤牛、牦牛的同源性均为99.4%,仅在第33位有1个氨基酸变异,即大额牛为异亮氨酸,而其它3个牛种均为缬氨酸,这是由该基因片段的第97位碱基发生转换(A←→G)造成的。从分子系统进化树看,瘤牛和普通牛先聚为一类,再依次与牦牛、大额牛、水牛相聚,这与传统的牛种分类结果一致。  相似文献   

12.
文章通过RT-PCR技术克隆了牦牛PRDM9基因的cDNA序列,利用DNAMAN、MAGA4、ExPASy等多个生物信息学软件进行了分析研究。结果表明:扩增出的牦牛PRDM9基因的编码区长1 533 bp,编码510个氨基酸。与普通牛、人和鼠相应基因核苷酸序列进行比对,其一致性分别为99%、76%和69%。预测的牦牛PRDM9蛋白二级和三级结构显示它是一个具有3种功能结构域的弱碱性螺旋状蛋白。这为今后的进一步研究提供了理论基础。  相似文献   

13.
本研究根据普通牛的κ-酪蛋白基因设计一对引物,首次成功扩增出了水牛的κ-酪蛋白外显子4基因,并经序列分析,结果表明κ-酪蛋白外显子4基因片段长780 bp。利用GenBank上的Blast进行比较,中国水牛κ-酪蛋白外显子4序列与地中海水牛、牛、牦牛的κ-酪蛋白外显子4序列同源性分别为99.5%、96.4%、95.9%;氨基酸同源性比较,中国水牛、地中海水牛、牛、牦牛均编码260个氨基酸,中国水牛与地中海水牛、牛、牦牛同源性分别为98.9%、92.0%和91.2%。核苷酸和氨基酸序列同源性结果显示,中国水牛和地中海水牛κ-酪蛋白基因变异不大。但由于在碱基230 bp处发生了一个碱基(A→C)的变化,从而导致其氨基酸也发生了变化,即K(Lys赖氨酸)→R(Arg精氨酸)。本研究为进一步对该基因的功能奠定基础。  相似文献   

14.
牦牛生长激素基因cDNA分子克隆及进化分析   总被引:1,自引:0,他引:1  
根据GenBank中登录的牛、山羊和绵羊等动物的生长激素基因序列的比对结果,设计特异性引物,分别从甘南黑牦牛和天祝白牦牛脑垂体中提取RNA,采用RT-PCR技术克隆,测序获得707 bp的片段。结果表明:该片段包含牦牛生长激素基因完整的开放阅读框,长654 bp,编码217个氨基酸。与牛的核苷酸序列相比,牦牛第607位碱基为A,而牛为C,但这一碱基差异并未导致氨基酸残基的变化,均编码精氨酸。牦牛生长激素基因编码区序列与牛、山羊、绵羊、马、猪、猫和犬的同源性分别为99.8%、98.6%、97.7%、90.6%、90.1%、89.1%和88.9%,氨基酸序列同源性分别为100%、99.1%、98.6%、88.9%、88.5%、88.9%和89.4%,表明生长激素基因在进化上非常保守。基于CDS序列和氨基酸序列建立的系统进化树结果一致,且与比较形态学和比较生理学分类结果一致。  相似文献   

15.
为了测定牦牛DDAH1和DDAH2基因序列并比较其在牦牛和雄性不育犏牛睾丸中的表达,以探究该基因与犏牛雄性不育的联系,试验从牦牛睾丸中提取总RNA,采用RT-PCR技术克隆并测序获得牦牛DDAH1和DDAH2基因的c DNA序列;利用实时荧光定量RT-PCR技术检测这两个基因在牦牛与犏牛睾丸中的表达。结果表明:克隆获得的牦牛DDAH1和DDAH2基因序列分别长959 bp及1 091 bp,均包含858 bp的CDS区。DDAH1基因序列与普通牛相比有4个碱基差异,序列同源性为99.58%,而推导的氨基酸序列仅存在1个氨基酸残基差异;DDAH2基因序列与普通牛比较相差1个碱基,序列同源性为99.91%,推导的氨基酸序列存在1个氨基酸残基差异。DDAH1和DDAH2基因在牦牛和犏牛睾丸组织中均有表达,DDAH1基因在犏牛睾丸组织中的表达量显著高于牦牛(P0.05),是牦牛睾丸组织中表达量的1.5倍;DDAH2基因在犏牛睾丸中的表达量与牦牛相比差异不显著。说明DDAH基因表达在犏牛睾丸中上调可能与其雄性不育有关。  相似文献   

16.
试验旨在研究牦牛PLIN2基因的序列特征和表达特性,并分析其表达与不同发情时期的卵巢的相关性。根据GenBank中已知的普通牛序列,设计克隆引物,经RT-PCR扩增得到牦牛PLIN2基因序列。RT-PCR检测PLIN2基因在各个组织中的表达量,实时荧光定量PCR分析卵巢不同发情时期的表达量。结果表明,牦牛PLIN2基因的编码区长为1 353 bp,共编码450个氨基酸,为无跨膜结构的非分泌蛋白。与GenBank中已知的普通牛序列同源性达到99.4%,表明PLIN2基因在进化过程中相当保守。在牦牛的各个组织中PLIN2分布广泛,但不同组织中的表达有差异,卵巢、乳腺、胃和肾脏中相对较多,而肺脏中几乎没有表达。实时荧光定量PCR结果显示,在卵巢的不同发情时期PLIN2都有表达,且在黄体期的表达量最高,表明PLIN2基因在牦牛发情周期中起着不可忽视的作用。  相似文献   

17.
本研究克隆了牦牛谷胱甘肽过氧化酶1GPX1基因的CDS区序列,分析了其核苷酸序列,并进行了系统发育分析。结果表明,牦牛GPX1基因CDS区全长618 bp,编码205个氨基酸;经与GenBank中其他物种GPX1基因CDS区比对,牦牛GPX1基因CDS区与普通牛和瘤牛完全一致,与水牛、绵羊和猪的序列一致性较高,与其他哺乳动物序列一致性较低。本研究为深入研究牦牛GPX1的生理功能提供了参考资料。  相似文献   

18.
为了确定河流型与沼泽型水牛促卵泡素受体(FSHR)基因密码子的使用模式,试验采用PCR产物直接测序法对9头河流型水牛、15头沼泽型水牛、6头大额牛和6头中甸牦牛的FSHR基因编码区序列进行了群体变异检测和单倍型划分,并结合已发表的普通牛、野牛、山羊、绵羊、人和黑猩猩的同源序列,对河流型与沼泽型水牛FSHR基因密码子使用的偏好性及与其他物种的差异进行了探讨。结果表明:两类水牛FSHR基因的密码子使用特征较为相似,河流型与沼泽型水牛分别有28个和27个偏好使用的密码子,对于编码Pro的4个密码子CCC、CCA、CCU和CCG而言,河流型水牛偏好使用CCC和CCA,而沼泽型水牛偏好使用CCC。水牛与其他物种共同偏好使用的密码子有20种,均偏好使用以G/C结尾的密码子。基于密码子的同义密码子相对使用度(RSCU)构建的聚类树显示河流型水牛与沼泽型水牛先聚为一类,再与大额牛、牦牛聚为一类,普通牛与山羊、绵羊和野牛聚为一类,人和黑猩猩聚为一类,揭示聚为一类的物种间在密码子使用上的偏好性较相似。  相似文献   

19.
谷胱甘肽S-转移酶Mu 3(GSTM3)是一种必需的抗氧化酶,其在精子中的存在与精子的耐冷性、质量和生育能力有关。为研究GSTM3的表达与雄性牦牛繁殖功能的关系,本研究对牦牛附睾GSTM3基因进行克隆、生物信息学分析,并应用实时荧光定量PCR分析GSTM3基因在牦牛和犏牛附睾以及睾丸组织中的表达情况。结果表明,牦牛GSTM3基因CDS区序列长度为678 bp,编码225个氨基酸;GSTM3基因编码蛋白为弱酸性且不具有跨膜结构,分子式为C1204H1857N319O340S19,分子量和等电点分别为26.85 ku和7.29;牦牛GSTM3核苷酸序列与普通牛和瘤牛有较高的种间同源性,分别为99.26%和98.53%;GSTM3基因在牦牛和犏牛附睾以及睾丸组织中均有不同程度的表达,牦牛附睾和睾丸的GSTM3表达量显著高于犏牛。  相似文献   

20.
以处于不同海拔高度的3个牦牛品种即巴州牦牛、大通牦牛、九龙牦牛为研究对象,对各牦牛品种的促红细胞生成素受体(EPOR)基因编码区进行PCR扩增和克隆测序.在对测序结果进行拼接得到牦牛EPOR基因编码区全序列基础上,利用生物信息学软件对其序列进行生物信息学及比较基因组学分析.结果表明:牦牛的EPOR基因编码区全长1 527 bp,编码508个氨基酸;EPOR信号肽由25个氨基酸组成,胞外域由225个氨基酸组成,跨膜区由22个氨基酸组成,胞浆域由236个氨基酸组成;EPOR基因编码区在牦牛品种间及其与普通牛间均存在一定的差异,这些差异是否与牦牛的适应性有关,值得进一步研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号