首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   12篇
  国内免费   2篇
林业   18篇
农学   20篇
基础科学   2篇
  69篇
综合类   24篇
农作物   25篇
水产渔业   1篇
畜牧兽医   46篇
园艺   7篇
植物保护   20篇
  2023年   2篇
  2022年   8篇
  2021年   11篇
  2020年   11篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   11篇
  2015年   8篇
  2014年   15篇
  2013年   25篇
  2012年   14篇
  2011年   13篇
  2010年   17篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   10篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
11.
【目的】分析梅PmARF17的生物学功能,探究梅花发育进程中其表达丰度与内源激素动态变化的关系,为梅花发育的调控研究提供依据。【方法】以梅品种‘大嵌蒂’为试材,克隆PmARF17,利用生物信息学软件分析基因结构、系统进化及其与其他物种同源蛋白的差异;亚细胞定位确定PmARF17蛋白在细胞中作用的部位;以梅品种‘大嵌蒂’和‘龙眼’不同发育阶段的花芽、叶芽、花器官为试材,利用qRT-PCR检测PmARF17时空表达模式,通过UPLC法测定IAA、GA3、ABA、ZT含量的动态变化,并与PmARF17的表达进行相关性分析;克隆PmARF17启动子,分析启动子的顺式作用元件,利用瞬时表达解析PmARF17与GA3的调控模式。【结果】从梅品种‘大嵌蒂’中克隆得到PmARF17,系统进化树分析表明PmARF17蛋白与其他植物的ARF蛋白序列高度同源;亚细胞定位表明其作用于细胞核和细胞膜上;qRT-PCR表达和内源激素含量的相关性分析表明,PmARF17的表达与IAA含量的变化趋势没有明显的相关性。PmARF17在雌蕊完好花芽中的表达水平相对不完全花芽显著上调,而GA3含量与PmARF17的表达趋势一致。ABA和ZT含量总体上与PmARF17的表达呈相反的趋势,表明两者可能抑制PmARF17的表达。PmARF17启动子含有GA顺式元件,且具有启动活性和组织表达特异性,在花瓣、雄蕊及根部特异表达。【结论】 PmARF17可能是梅花发育的正调控基因,促进梅雌蕊的正常发育。PmARF17的表达可能受到GA3的正调控,其可能通过作用于雄蕊和花瓣,进而影响梅的雌蕊发育进程。  相似文献   
12.
Genetic Resources and Crop Evolution - Cicer arietinum L. (chickpea) is one of the most significant legume crops domesticated in the Fertile Crescent. This study was aimed to characterize a diverse...  相似文献   
13.
14.
Summary The effect of colchicine on isolated microspore cultures of Brassica napus was evaluated in order to combine a positive effect of colchicine on the induction of embryogenesis with the possibility to induce chromosome doubling at an early developmental stage, thus avoiding the production of haploid or chimeric plants. Colchicine was added to the culture medium immediately after isolation of B. napus microspores. The cultures were incubated from 6 to 72 h with various concentrations of colchicine. Samples were taken from the regenerating embryoids after 6 weeks for ploidy determination by flow-cytometry.The highest diploidization rate was obtained after a 24 h treatment of microspores with 50 mg/l colchicine, leading to 80–90% diploid embroids. A concentration of 100 mg/l colchicine applied for the same duration resulted in a lower diploidization rate (76–80%). Treatment durations of 6 h were not long enough to induce a high rate of diploidization, whereas the application of 10 mg/l for 72 h was also very effective.A sample of the plants regenerated from the colchicine treated microspores was transferred to the greenhouse. The plants looked similar to normal diploid rapeseed plants and showed reasonable pod and seed set. Thus, an additional generation for seed increase in the greenhouse is rendered unnecessary. The advantage of applying a minimum volume of colchicine under controlled in vitro conditions means a considerable saving of time and labour in DH-breeding programs.  相似文献   
15.
Summary Cultivar specific DNA profiles in rye were revealed by polymerase chain reaction (PCR) using randomly amplified polymorphic DNA (RAPD) sequences. Ten base primers were used for the amplification of genomic DNA of rye cultivars by PCR. RAPD analysis was found to be reproducible among samples between PCR runs. When amplification profiles of different rye cultivars were compared using various primers, the overall profiles were cultivar specific. However, not all primers revealed polymorphisms. These primers appear to amplify conserved sequences in all rye cultivars. Intracultivar studies were conducted on two of the cultivars. In the cultivar Imperial, no polymorphisms were observed among ten plants analyzed with five primers. In the cultivar Balboa, polymorphisms were observed among fifty plants with four of the ten primers analyzed. Despite the small amount of intracultivar variability, RAPD analysis has the potential to be a rapid and reliable method of cultivar identification in this outcrossing species.  相似文献   
16.
Due to the short growing season in the high northern latitudes, the development of early maturing spring wheat (Triticum aestivum L.) cultivars is important to avoid frost damage which can lower production and quality. We investigated earliness of flowering and maturity, and some associated agronomic traits, using a set of randomly selected high northern latitude adapted spring wheat cultivars (differing in maturity) and their F1 and F2 crosses made in a one-way diallel mating design. The parents, and their F1 and F2 crosses were evaluated under field conditions over 2 years. Anthesis and maturity times were controlled by both vernalization response and earliness per se genes, mainly acting additively. Non-additive genetic effects were more important in controlling grain fill duration, grain yield and plant height. Additive × additive epistatic effects were detected for all traits studied except time to anthesis. Segregation analyses of the F2 populations for time to anthesis indicated the presence of different vernalization response genes. Molecular genetic analyses revealed the presence of Vrn-A1 and Vrn-B1 genes in the parental cultivars. Narrow-sense heritability was medium to high (60–86%) for anthesis and maturity times but low to medium (13–55%) for grain fill duration, plant height and grain yield. Selection for early flowering/maturity in early segregating generations would be expected to result in genetic improvement towards earliness in high latitude spring wheats. Incorporation of the vernalization responsive gene Vrn-B1 in combination with vernalization non-responsive gene Vrn-A1 into spring wheats would aid in the development of early maturing cultivars with high grain yield potential for the high latitude wheat growing regions of the northern hemisphere.  相似文献   
17.
The sorption efficiency of indigenous rice (Oryza sativa) bran for the removal of organics, that is, benzene, toluene, ethylbenzene, and cumene (BTEC), from aqueous solutions has been studied. The sorption of BTEC by rice bran is observed over a wide pH range of 1-10, indicating its high applicability to remove these organics from various industrial effluents. Rice bran effectively adsorbs BTEC of 10 microg mL(-1) sorbate concentration from water at temperatures of 283-323 +/- 2 K. The effect of pH, agitation time between solid and liquid phases, sorbent dose, its particle size, and temperature on the sorption of BTEC onto rice bran has been studied. The pore area and average pore diameter of rice bran by BET method are found to be 19 +/- 0.7 m(2) g(-1) and 52.8 +/- 1.3 nm. The rice bran exhibits appreciable sorption of the order of 85 +/- 3.5, 91 +/- 1.8, 94 +/- 1.4, and 96 +/- 1.2% for 10 microg mL(-1) concentration of benzene, toluene, ethylbenzene, and cumene, respectively, in 60 min of agitation time using 0.1 g of rice bran at pH 6 and 303 K. The sorption data follow Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models. Sorption capacities have been computed for BTEC by Freundlich (32 +/- 3, 61 +/- 14, 123 +/- 28, and 142 +/- 37 m mol g(-1)), Langmuir (6.6 +/- 0.1, 7.5 +/- 0.13, 9.5 +/- 0.22, and 9.4 +/- 0.18 m mol g(-1)), and D-R isotherms (11 +/- 0.5, 16 +/- 1.3, 30 +/- 2.2, and 33 +/- 2.5 m mol g(-1)), respectively. The Lagergren equation is employed for the kinetics of the sorption of BTEC onto rice bran and first-order rate constants (0.03 +/- 0.002, 0.04 +/- 0.003, 0.04 +/- 0.003, and 0.05 +/- 0.004 min(-1)) have been computed for BTEC at their concentration of 100 mug mL(-1) at 303 K. Studies on the variation of sorption with temperatures (283-323 K) at 100 mug mL(-1) sorbate concentration gave thermodynamic constants DeltaH (kJ mol(-1)), DeltaG (kJ mol(-1)), and DeltaS (J mol(-1) K(-1)). The results indicate that the sorption of organics onto rice bran is exothermic and spontaneous in nature under the optimized experimental conditions selected. This sorbent has been used successfully to accumulate and then to determine benzene, toluene, and ethylbenzene in wastewater sample.  相似文献   
18.
A new diterpenoid, 15-angeloyloxy-16,17-epoxy-19-kauronic acid (1), along with five known metabolites, 16-kauren-19-oic acid (2), 6′-hydroxy-2′,3′,4,4′-tetramethoxychalcone (3), isosakuranetin (4), acacetin (5), and kaempferide (6) was isolated from the organic extracts of the roots of Chromoleana odorata. Their structures were determined by spectroscopic evidences. The structures of 1 and 2 were further confirmed by single-crystal X-ray diffraction studies. Compound 2 exhibited significant α-glucosidase inhibitory and antibacterial activities against Escherichia coli and Bacillus subtilis.  相似文献   
19.
A new taxoid Taxawallin I (1) along with two known taxoids (2-3) were isolated from methanolic bark extract of Taxus wallichiana Zucc. Structural characterization was confirmed by mass and NMR spectral techniques. Taxawallin I exhibited significant in-vitro anticancer activity against HepG2, A498, NCI-H226 and MDR 2780AD cancer lines. Tubulin binding assay was performed to assess its tubulin binding activity. Molecular docking analysis was performed to study the potential binding mode inside the taxol binding site of β-tubulin.  相似文献   
20.
In this study, long-term effects of salinity and high boron (B) on subcellular distribution of sugars in wheat leaves were investigated. Four treatments with three replications of each; control, high B, sodium chloride (NaCl) and NaCl + high B, respectively were established according to completely randomized design. Plants were grown hydroponically and harvested after 6 weeks onset of experiment. NaCl treatment markedly decreased the shoot fresh and dry weight compared to high B or NaCl + high Boron. It increased the sugar concentrations in subcellular compartments, whereas decreased in NaCl + high B. Contrary, NaCl either alone or in combination with high B decreased the sugar contents in whole leaf compared to control or high B. Overall, higher concentrations of sugars were observed in symplast compared to apoplast indicating the symplast as major compartment for sugar transport. Furthermore, wheat plants accumulate sugars in subcellular compartments to maintain their growth under stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号