首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   1篇
畜牧兽医   4篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 9 毫秒
1
1.
旨在采用GreenFeed测定系统评价胎次对干奶牛瘤胃发酵特征和甲烷(CH4)排放量的影响,进而获得在舍饲生理状态下的CH4排放规律,建立预测模型。试验共选取48头处于干奶期的荷斯坦奶牛,根据胎次分为4个组,每组12头奶牛,分别为一胎组、二胎组、三胎组、四胎及以上胎次组,试验期45 d,其中预试期5 d,正试期40 d。结果表明:1)三胎、四胎及以上组活体重和代谢体重显著高于一胎、二胎组(P<0.05)。2)三胎组的氨态氮(NH3-N)浓度显著高于一胎组(P<0.05),与二胎、四胎及以上组无显著差异(P>0.05);一胎、二胎组的微生物蛋白(MCP)显著高于四胎及以上组(P<0.05),与三胎组之间无显著差异(P>0.05);一胎组瘤胃中戊酸显著低于三胎组(P<0.05),与二胎和四胎及以上组之间无显著差异(P>0.05);各个处理组之间的总挥发性脂肪酸(TVFA)、pH、乙酸、丙酸、丁酸、异丁酸、异戊酸、乙丙比均无显著差异(P>0.05)。3)干奶牛的平均CH4排放量为336 g·d-1,三胎、四胎及以上组干奶牛的CH4排放量显著高于一胎组牛(P<0.05),与二胎组牛无显著差异(P>0.05)。4) CH4排放量与干奶牛胎次和体重呈极显著的正相关关系(P<0.01),相关系数分别为0.47和0.61,基于体重建立预测模型:CH4排放量(g·d-1)=0.348×体重(kg)+64.018(R2=0.46)。综上可知,根据体重可以预测干奶期荷斯坦奶牛的CH4排放量。该模型还可用于验证其他生理阶段奶牛的CH4排放量。  相似文献   
2.
This study was conducted to evaluate the effects of feeding supplemental illite to Hanwoo steers on methane (CH4) emission and rumen fermentation parameters. An in vitro ruminal fermentation technique was conducted using a commercial concentrate as substrate and illite was added at different concentrations as treatments: 0%, 0.5%, 1.0%, and 2.0% illite. Total volatile fatty acids (VFA) were different (< 0.05) at 24 h of incubation where the highest total VFA was observed at 1.0% of illite. Conversely, lowest CH4 production (< 0.01) was found at 1.0% of illite. In the in vivo experiment, two diets were provided, without illite and with addition of 1% illite. An automated head chamber (GreenFeed) system was used to measure enteric CH4 production. Cattle received illite supplemented feed increased (< 0.05) total VFA concentrations in the rumen compared with those fed control. Feeding illite numerically decreased CH4 production (g/day) and yield (g/kg dry matter intake). Rumen microbial population analysis indicated that the population of total bacteria, protozoa and methanogens were lower (< 0.05) for illite compared with the control. Accordingly, overall results suggested that feeding a diet supplemented with 1% illite can have positive effects on feed fermentation in the rumen and enteric CH4 mitigation in beef cattle.  相似文献   
3.
There are knowledge gaps in animal agriculture on how to best mitigate greenhouse gas emissions while maintaining animal productivity. One reason for these gaps is the uncertainties associated with methods used to derive emission rates. This study compared emission rates of methane (CH4) and carbon dioxide (CO2) measured by a commercially available GreenFeed (GF) system with those from (1) a mass flow controller (MFC) that released known quantities of gas over time (i.e., emission rate) and (2) a respiration chamber (RC). The GF and MFC differed by only 1% for CH4 (P = 0.726) and 3% for CO2 (P = 0.013). The difference between the GF and RC was 1% (P = 0.019) for CH4 and 2% for CO2 (P = 0.007). Further investigation revealed that the difference in emission rate for CO2 was due to a small systematic offset error indicating a correction factor could be applied. We conclude that the GF system accurately estimated enteric CH4 and CO2 emission rates of cattle over a short measurement period, but additional factors would need to be considered in determining the 24-hr emission rate of an animal.  相似文献   
4.
The objective of this experiment was to determine if titanium dioxide (TiO2) dosed through an automated head chamber system (GreenFeed; C-Lock Inc., Rapid City, SD, USA) is an acceptable method to measure fecal output. The GreenFeed used on this experiment had a 2-hopper bait dispensing system, where hopper 1 contained alfalfa pellets marked with 1% titanium dioxide (TiO2) and hopper 2 contained unmarked alfalfa pellets. Eleven heifers (BW = 394 ± 18.7 kg) grazing a common pasture were stratified by BW and then randomized to either 1) dosed with TiO2-marked pellets by hand feeding (HFD; n = 6) or 2) dosed with TiO2-marked pellets by the GreenFeed (GFFD; n = 5) for 19 d. During the morning (0800), all heifers were offered a pelleted, high-CP supplement at 0.25% of BW in individual feeding stanchions. The HFD heifers also received 32 g of TiO2-marked pellets at morning feeding, whereas the GFFD heifers received 32 g of unmarked pellets. The GFFD heifers received a single aliquot (32 ± 1.6 g; mean ± SD) of marked pellets at their first visit to the GreenFeed each day with all subsequent 32-g aliquots providing unmarked pellets; HFD heifers received only unmarked pellets. Starting on d 15, fecal samples were collected via rectal grab at feeding and every 12 h for 5 d. A two-one sided t-test method was used to determine agreement and it was determined that the fecal output estimates by HFD and GFFD methods were similar (P = 0.04). There was a difference (P < 0.01; Bartlett’s test for homogenous variances) in variability between the dosing methods for HFD and GFFD (SD = 0.1 and 0.7, respectively). This difference in fecal output variability may have been due to variability of dosing times-of-day for the GFFD heifers (0615 ± 6.2 h) relative to the constant dosing time-of-day for HFD and constant 0800 and 2000 sampling times-of-day for all animals. This research has highlighted the potential for dosing cattle with an external marker through a GreenFeed configured with two (or more) feed hoppers because estimated fecal output means were similar; however, consideration of the increased variability of the fecal output estimates is needed for future experimental designs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号