首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
基于颜色因子与图像融合的茶叶嫩芽检测方法   总被引:1,自引:0,他引:1  
针对采茶机器人的茶叶嫩芽识别问题,提出一种基于颜色因子与图像融合的茶叶嫩芽图像检测算法。首先对RGB彩图进行ExG、ExG-ExR,MExG,COM2灰度化处理,并进行灰度图归一化处理;然后选择合适的通道,利用Haar和DB2小波进行多通道图像分解、滤波、融合。获得融合后的灰度图像直方图,对直方图形状进行分析,根据嫩芽老叶的面积比与像素数目比确定图像分割阈值。试验结果表明,此算法能充分利用嫩芽与老叶的颜色差异,很好地检测出茶叶嫩芽,SD,Dice,ER,NR分别为63.005%,60.09%,101.235%,6.515%,性能优于Otsu。  相似文献   

2.
基于CLAHE的苹果树树枝迭代阈值分割方法研究   总被引:3,自引:0,他引:3  
针对农业采摘机器人自主导航和采摘过程中的障碍物树枝识别问题,为解决迭代阈值分割算法在目标与背景图像灰度差别不明显情况下的分割缺陷,提出了基于对比度受限自适应直方图均衡化基础上的果树树枝迭代阈值分割方法。首先,通过颜色空间变换,将RGB颜色空间的果树树枝图像转换到XYZ和I1I2I3颜色空间,并提取出X-Y色差因子和I2颜色因子,对其进行灰度差别分析;然后,对灰度差别不明显的图像进行对比度受限直方图均衡化处理后,再进行迭代阈值分割,从而剥离出树枝区域。实验结果显示,采用本文方法,树枝图像分割成功率为92%。  相似文献   

3.
识别小麦抽穗扬花期抽穗情况,可用于指导后期水肥管理、病害防治和产量预测等。为实现准确、自动地麦穗计数,提出一种基于颜色特征的麦穗计数方法。抽穗扬花期小麦麦穗与叶片、茎秆颜色非常接近,常见颜色特征并不能有效分割麦穗,通过彩色直方图均衡化和红绿归一化差异指数对麦穗进行有效提取。针对图像中麦穗粘连问题,利用改进Harris角点检测算法分别对垂直拍摄和45°夹角拍摄的小麦图像进行验证。通过样本图像进行计数试验,准确率分别为96.06%和94.74%。结果表明,经均衡化处理后麦穗、叶片和茎秆出现明显颜色色差,可以利用颜色特征提取大田环境下抽穗扬花期麦穗图像;麦穗细化后进行骨架交点检测,可用于粘连麦穗的准确计数。  相似文献   

4.
基于最小二乘法的温室番茄垄间视觉导航路径检测   总被引:10,自引:0,他引:10  
针对温室非结构作业环境和复杂背景下作业机器人路径识别检测问题开展研究。在HSI颜色空间分析番茄垄间道路图像在各分量的分布特性,提出了基于机器视觉的垄间加热管敏感区域提取方法,依据I分量直方图采用最大类间方差法进行图像自适应阈值分割,对分割后二值图像利用目标区域的边缘提取算法获得导航离散点簇。根据最小二乘法原理对导航离散点簇拟合得到2条加热管边缘线,在此基础上给出中心导航基准线检测算法,并针对光照不均和作物遮挡对导航路径检测进行了实验。实验表明,与Hough变换算法相比,该算法简单快速,对光照不均具有良好的鲁棒性,能够准确提取目标敏感区域的边缘信息,对不同遮盖率番茄垄间导航路径提取正确率达91.67%。  相似文献   

5.
基于色度和纹理的黄瓜霜霉病识别与特征提取   总被引:4,自引:0,他引:4  
研究了可见光波段的黄瓜霜霉病信息分布和分割方法,有效实现了温室非结构环境下黄瓜病害信息识别。通过研究温室黄瓜图像在RGB、HIS和YCbCr颜色空间的分布特点,建立了光照分析模型,提高了不同光照条件下的病害提取适应性。分析了病害目标与环境背景Cb和Cr均值差,提出了CbCr组合算法,实现了目标的快速有效识别,满足了实时对靶施药的要求。通过随机抽取30幅黄瓜霜霉病图像进行算法验证,结果表明图像的平均识别正确率达90.6%。  相似文献   

6.
基于模糊聚类的玉米大斑病害图像的分割技术   总被引:2,自引:2,他引:0  
通过颜色空间的转换,将RGB颜色空间转化为HSI颜色空间,在色度H空间对玉米大斑病图像进行分割。应用模糊聚类分析的方法,确定了图像分割的阈值。对186幅玉米大斑病图像进行分割试验,分割的准确率为97.8%。分析表明,准确的病害图像分割可以为病害的特征值提取和病害的模式识别做好准备。  相似文献   

7.
基于图像处理的小麦病害诊断算法   总被引:8,自引:2,他引:6  
通过小波变换和纹理矩阵计算,强调了小麦病害部位.由自动阈值处理获得病害部位的二值图像;通过二值图像与原图像的匹配,计算出病害部位的颜色特征值;以待测病害图像与库存病害图像之间颜色特征值差值最小为原则,检索出库存病害图像.算法对小麦病害图像的诊断准确率达90%.  相似文献   

8.
多颜色空间中玉米叶部病害图像图论分割方法   总被引:3,自引:0,他引:3  
为了提高农田自然背景下玉米叶部病害诊断精度,提出了一种多颜色空间下的玉米叶部病害的图论分割方法.该方法在不同的颜色空间中引入图论进行分割,分别在单一颜色空间下将玉米病害的分割问题转换为图的分割问题,再通过有效的融合方法对初始的分割结果进行信息融合.通过对玉米叶部病害图像的分割实验表明,该方法的分割效果较好.在多种颜色空间下进行玉米叶部病害的图论分割方法是可行的、有效的.  相似文献   

9.
近年来,基于叶片图像的番茄病害识别研究受到广泛关注。本研究利用番茄叶部病害图像中病斑的颜色和纹理的差异,通过提取番茄病害叶片图像的颜色矩(CM)、颜色聚合向量(CCV)和方向梯度直方图(HOG)等颜色纹理特征,引入核相互子空间法(KMSM),建立了番茄叶部病害快速识别模型(CCHKMSM)。该模型首先通过高斯核函数,将从不同类别叶部病害图像数据中抽取的颜色及纹理特征映射到高维空间;然后对映射的高维空间进行主成分分析,建立非线性病害特征空间;最后基于非线性特征空间最小正则角对病害进行识别。本研究分别以公共农业病虫害数据集PlantVillage中的9种番茄病害类和1类健康番茄叶片图像,以及实际场景下采集的3种叶部病虫害图像数据集开展算法验证试验。基于PlantVillage的试验结果表明,当每类样本集数量为350张时,本研究所提出的CCHKMSM模型识别率达到100%,模型训练时间为0.1540 s,平均识别时间为0.013 s;同时,在样本数量150张到1000张的测试区间内,模型平均识别率为99.14%。该识别率高于其他典型的机器学习模型,与基于深度学习的识别方法相当。基于实际复杂场景下采集病害图像集的实验中,通过对原始图像切割分块后,对各病害的平均识别率为96.21%。试验结果表明,本研究提出的CCHKMSM模型识别准确率高且计算量小,其训练时间和测试时间都远低于深度学习等方法。该方法对系统要求低,具有在手持设备、边缘计算终端等低配置感知系统中的应用潜力。  相似文献   

10.
面向复杂背景环境目标的快速识别研究   总被引:1,自引:0,他引:1  
面向复杂背景环境的定位目标的快速识别是野外作业机器人的关键技术,以柑橘为例,研究了自然环境下基于彩色信息的目标定位的识别方法。首先,采用YCbCr颜色模型来分析柑橘彩色图像的颜色和灰度特征,并通过Otsu与FCM分割算法相结合对在不同光照条件下拍摄的彩色目标图像进行分割;然后,利用形态学数学和区域标记消除分割后产生的随机噪声;最后,用凸包算法提取果实形状特征,并通过凸包算法来判定是否为柑橘和是否可采。对500张彩色柑橘图像进行分割,结果表明采用Cr颜色分量和Otsu与FCM算法相结合有效地解决复杂自然光照下的分割问题;对963个柑橘进行了凸包算法识别试验,总体识别率达87.53%。凸包算法对遮挡图像也可进行高效识别,并能快速、准确地提取柑橘目标的质心坐标。  相似文献   

11.
为了提取到更加准确、丰富的叶片病斑的颜色特征和空间特征,解决病害严重程度细粒度分类粗糙、识别准确率低等问题,提出一种融合颜色掩膜网络和自注意力机制(Fusion color mask and self-attention network, FCMSAN)的病害识别方法。FCMSAN由颜色掩膜网络(Color mask network,CMN)和融合通道自适应的自注意力网络(Channel adaptive self-attention network, CASAN)构成。CMN通过学习叶片病斑颜色区域信息提高模型提取颜色特征的能力;CASAN能够提取全局范围内的病斑特征,同时加入病斑的位置特征和通道自适应特征,可以精确、全面定位叶片病斑区域。最后通过特征转换融合模块(Transfer fusion layer,TFL)将CMN和CASAN进行融合。经实验证明,FCMSAN在61类农作物病虫害细粒度识别中,Top-1的分类准确率达到87.97%,平均F1值达到84.48%。最后通过可视化分析,验证了本文方法在病害识别中的有效性。  相似文献   

12.
基于计算机视觉系统分析研究缺素番茄叶片的色彩图像,可以准确提取出缺素番茄叶片色彩图像的特征。对当前缺素番茄叶片色彩图像特征提取中,可以运用计算机视觉,优化设计图像处理软件,依据番茄叶片颜色特征来完成缺素番茄叶片的识别。实验表明:基于计算机视觉系统,优化设计缺素番茄叶片色彩图像特征提取软件,可提升缺素番茄叶片色彩图像分析精度(提升32.0%),准确判断提取缺素番茄叶片图像的特征。基于计算机视觉系统,进行缺素番茄叶片的色彩图像特征提取,有效提高了缺素番茄叶片色彩图像分析精度,可在实践中推广应用该技术。  相似文献   

13.
标准烟叶数据库的图像检索   总被引:7,自引:0,他引:7  
提出把图像的形状特征、颜色特征和纹理特征相结合的方法进行基于内容的图像检索。通过对人的视觉检索过程的研究,提出把数据库中的图像依次分别按形状特征、颜色特征和纹理特征分级聚类的方法,既符合人的视堂特点又大大提高了检索效率。  相似文献   

14.
柑橘是我国重要的经济林果之一,因种植区多在山区坡地,病虫害防治给管理带来了很大困难,在线监测与专家决策成为现代农业发展的方向。本文采用物联网技术和深度学习方法,基于尺度可变视频流信息,设计并构建了一套基于柑橘叶片的病虫害动态识别系统。该系统实现了全方位智能控制,解决了实时叶片图像变形和尺度缩放等问题,实现了柑橘图像的动态采集和智能识别。叶片检测的MAP达到87.72%,病害识别准确率达到95.46%,系统运行结果表明,该系统可有效实现柑橘智能监控的管理,为病虫害物联网监控提供参考。  相似文献   

15.
为实现对柑橘叶片病虫药害种类的快速精准识别,针对多种类柑橘病叶设计一种融合注意力机制(Attention mechanism)的双向门控循环单元-循环神经网络(Attention-bidirectional gate recurrent unit-recurrent nural network, Att-BiGRU-RNN)分类模型。该模型在编解码模块分别采用BiGRU和RNN结构,能够利用高光谱数据前后波段光谱信息的关联性,有效提取光谱信息的深层特征;根据不同波段光谱信息的差异性引入注意力机制动态分配权重信息,提高重要光谱特征对分类模型的贡献率,提升模型的分类准确率。获取6类柑橘叶片高光谱信息,构建实验样本集,利用Att-BiGRU-RNN、VGG16、SVM和XGBoost分别建立柑橘病叶分类模型,Att-BiGRU-RNN模型总体分类准确率(Overall accuracy, OA)平均可达98.21%,相较于其他3种模型分别提高4.71、10.95、3.89个百分点,对光谱曲线重合度高的除草剂危害和煤烟病叶片的分类准确率有显著提升。实验结果表明,深度学习方法可有效利用高光谱不同...  相似文献   

16.
基于图像处理的叶斑病分级方法的研究   总被引:6,自引:1,他引:5  
针对目前植物病害染病程度判别中以目测为主,存在着主观随意的缺陷,开发出一种基于计算机图像处理技术的病害分级新方法.同时,分析了图像分割中存在的各影响因素,运用Otsu法提取出叶片区域;提出在HSI颜色空间下选择H分量分割病斑以减少光照变化和叶脉的干扰,使用Sobel算子检测病斑边缘,分割出病斑区域,并通过计算病斑面积占叶片面积的百分比给出病害的染病级别.研究表明,使用该方法对植物叶部病害严重度进行分级具有快速精确的特点.  相似文献   

17.
植株叶片中叶绿素浓度的高低与植株进行的光合作用效率、植株的整体生长状况息息相关,在农业生产过程中,常常根据叶片中叶绿素含量(SPAD)的多少来精确的判断植物的生长状态,也是控制植株长势的依据。传统的叶绿素含量检测方式分光光度法,存在耗时长、步骤多、操作要求高等问题,而采用计算机视觉技术处理图像的过程更加准确、高效,不会像人眼分析时受到主观因素的影响导致偏差。为此,基于计算机视觉技术来检测玉米叶片中叶绿素含量,利用扫描仪采集玉米叶片的图像,将图像输送至计算机,然后通过软件处理图像,分割出图像中有效像素的颜色特征值,将特征值转换就可以得到玉米叶片中叶绿素。试验结果显示:利用计算机视觉技术可以准确地测定玉米叶片中叶绿素含量,进而进行合理施肥,避免浪费,对增加玉米的产量具有极大的价值。  相似文献   

18.
基于动态集成的黄瓜叶部病害识别方法   总被引:3,自引:0,他引:3  
对作物病害类型的准确识别是病害防治的前提。为提高病害识别的准确度,以黄瓜叶部病害识别为例,提出一种基于动态集成的作物叶部病害种类的识别方法。首先利用图像分块策略提取病害图像的75维颜色统计特征,然后采用不一致度量方法对构建的10个BP神经网络单分类器进行差异性度量,并按照差异性大小进行排序,最后根据分类器的可信度,动态选择差异性大的分类器子集对病害图像进行集成识别。在由512幅白粉病、霜霉病、灰霉病和正常叶片4类黄瓜叶片组织图像构成的测试集上,所提方法的识别错误率为3.32%,分别比BP神经网络、SVM、Bagging、Ada Boost算法降低了1.37个百分点、1.56个百分点、1.76个百分点、0.78个百分点。试验结果表明:所提方法能够实现黄瓜叶部病害种类的准确识别,可为其它作物病害的识别提供借鉴。  相似文献   

19.
为了解决近色背景果实识别困难问题,针对果实近球形的形态特性,提出了一种利用深度图像从果实形态角度进行果实识别定位的算法。该算法使用深度摄像头获取果树的深度图像,通过深度图像计算出各像素点的梯度向量,将梯度向量看作运动矢量场,并计算出矢量场的散度,根据散度最大原则,从矢量场中搜索出辐散中心点;然后利用果实和叶片等深图像的差异从辐散中心点中筛选出果实中心点,以果实中心点为起点采用八方向搜索方法搜索出果实边界点,将果实边界点依次连接后形成的封闭区域内的果实图像导入点云;最后根据果实图像部分点云利用RANSAC算法求出目标果实的拟合球形,进而得出果实的尺寸以及三维空间位置。该算法无需传统算法需要利用的颜色特征,而仅利用了深度图像中的深度信息进行果实识别定位,能够克服传统算法受色彩、光照等因素影响的弊端,并且由于该算法完全没有利用到彩色图像信息,因此不仅可以实现绿色果实的识别定位,还可以实现采摘机器人在夜间环境下正常工作,为复杂环境下的果实识别定位算法研究提供了技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号