首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
从云南大理市弥渡县石夹泉热泉的55℃底泥中筛选到1株高温纤维素酶的高产菌株,对其进行显微形态及生理生化特征、16SrRNA基因序列分析,将其初步鉴定为不动杆菌属(Acinetobacter sp.)的一株菌,命名为Acinetobacter sp.Cel-55。对其生长条件及酶学性质进行研究,结果表明:该菌株耐高温性较好,菌株在55℃仍能生长,菌株最适生长温度为37℃。所产纤维素酶最适酶活温度为75℃,最适反应pH为7.0。该酶具有良好的热稳定性,在75℃下,保温120min仍能保持80%的活性。Zn^2+、Mn^2+、Ca^2+、K^+、Mg^2+、Fe^2+、Cu^2+均对酶活力起一定的抑制作用,其中Mg2+的抑制效果最为明显。  相似文献   

2.
从云南大理市弥渡县白总旗热泉的55℃底泥中筛选到1株高温蛋白酶的高产菌株,进行显微形态及生理生化特征、16S rRNA基因序列分析,将其初步鉴定为短杆菌属(Brevibacillus sp.)的一株菌,命名为Brevibacillus sp.Pro-55。对其生长条件及酶学性质进行研究,结果表明:该菌株耐高温性较好,菌株在55℃仍能生长,菌株最适生长温度为43℃。所产蛋白酶最适酶活温度为40℃,最适反应pH为6.0。该酶在25℃以下,能保持良好的稳定性。Mn~(2+)、K~+、Fe~(2+)对该酶有一定的抑制作用,Zn~(2+)、Ca~(2+)、Mg~(2+)、Cu~(2+)均对该酶活力起到促进作用,其中Cu~(2+)的促进效果最为显著。  相似文献   

3.
本研究旨在筛选出一株高产脂肪酶的菌株并进行鉴定,同时评定所产脂肪酶的酶学性质,为饲用脂肪酶的开发提供理论依据和实用参考。通过平板法筛选产酶菌株,根据菌株形态、培养特征、生理生化试验和ITS-r DNA序列分析确定其属种,并对产酶菌株进行初步的酶学性质研究。从富含油污的土壤中筛选出一株高产脂肪酶菌株FZ-4,并鉴定为白地霉(Galactomyces geotrichum),其初步酶学性质研究表明,该菌株所产脂肪酶为胞外酶,在28℃、250 r/min条件下培养96 h所产脂肪酶活力达16.7 U/m L,该酶最适反应p H为7.5,最适反应温度为40℃,在p H为7.0~9.0和20~45℃具有较好的稳定性,且该酶对C16脂肪酸有较强的底物专一性。分离获得的Galactomyces geotrichum FZ-4是一株高效的产脂肪酶菌株,具有潜在的研究和开发价值。  相似文献   

4.
以新鲜牛乳中分离到的荧光假单胞菌为研究对象,对其分泌产生的耐热性脂肪酶进行纯化,并研究不同温度、pH值、Ca2+质量浓度对该脂肪酶活性的影响.结果表明:经过初步纯化的脂肪酶分子质量为55 kD,纯度为91.5%,并且发现该耐热性脂肪酶在50℃、30 min,63℃、30 min,72℃、20 s,90℃、10 min,121℃、0.1 MPa、20 min处理之后,相对酶活力分别为75.02%、86.21%、73.25%、17.62%、13.63%;并且该脂肪酶的最适温度为63℃,最适pH值为8.0;在荧光假单胞菌体外,Ca2+质量浓度对荧光假单胞菌脂肪酶的活力并无显著影响.  相似文献   

5.
为了提高产淀粉酶枯草芽胞杆菌Bacillus subtilis N21的酶活,试验采用紫外线对该菌株进行诱变,并对该淀粉酶的部分酶学性质进行了研究。结果表明,淀粉酶酶活由出发株的32.96 U/mL增加到86.24 U/mL,比原菌株酶活提高了161.65%。该酶的最适反应温度为35℃,最适pH值为7.0,在30~40℃,pH值为5.0~8.0条件下较稳定。Ca2+和Mn2+对酶有激活作用,Cu2+、Zn2+对酶有抑制作用,而Mg2+、Fe2+对其影响较小。说明筛选出1株产酶活性较强的突变菌株。  相似文献   

6.
产植酸酶菌株的筛选及酶学性质的研究   总被引:3,自引:0,他引:3  
从100多个自然样品中,分离、筛选出一株高产植酸酶的曲霉(Aspergillus sp.)茵株.在30℃摇瓶发酵4 d时酶活达到6105.5 IU/mL,并对其粗酶液的性质作了研究:该酶作用的最适温度为45 ℃;最适pH为5;该酶在55℃、pH为3~7时,相对酶活大于80%;金属离子Zn2+"、Al3+、Mn2+,Cu2+等对该酶有较强的抑制作用,而Mg2+等则有一定的激活作用.  相似文献   

7.
从长春市油脂厂采集的土壤样品中分离到1株脂肪酶活力较高的白地霉1522(其发酵液酶活力为35U/mL)。以此为出发菌株,经紫外线、氯化锂、盐酸羟胺、亚硝基胍等诱变筛选后,获得1株高活力脂肪酶产生菌N79(其发酵液酶活力达80U/mL)。对诱变株N79最适培养条件的研究表明,其最适培养基组成为:蛋白胨4%,山梨醇0.75%,橄榄油0.5%,MgSO4·7H2O 0.1%;产酶最适发酵条件是,培养液起始pH为6.0~6.5,发酵温度为26~30℃,通气量为每250mL三角烧瓶中盛培养液30mL,发醇时间为32~36h。在量适培养条件下,其发酵液酶活力可达到105-115U/mL。白地霉N79的发酵液经硫酸铵盐析制得脂肪酶粗制品,它在聚乙烯醇橄榄油乳化液系统中,水解橄榄油的最适pH为7.8,最适温度为42℃,在pH4-8、4℃下存放24h及pH7.5、40℃下保温15min,酶活力不变。  相似文献   

8.
为了从自然界和动物消化道内筛选能产高效蛋白酶的有益菌株,试验采用酪蛋白平板法从鸡粪中筛选出一株产蛋白酶的菌株JF,根据形态学鉴定、16S r DNA核酸序列分析,并对该菌所产蛋白酶粗酶液的酶学特性进行分析。结果表明:筛选出的菌株属于短小芽孢杆菌(Bacillus pumilus);该菌株的酶学特性,最适反应温度为60℃,最适pH值为9. 0,属于中温弱碱性蛋白酶; 30℃时仍能保持73. 0%的相对酶活性,具有一定低温酶的特性; Mn2+对此酶具有极显著促进作用(P0. 01),而Zn2+、乙二胺四乙酸(EDTA)对此酶具有极显著抑制作用(P0. 01)。  相似文献   

9.
从吐鲁番坎儿井水样为实验材料,筛选出一株产生蛋白酶活性较高的X-34菌株,经生长特点、菌体及菌落形状和生理生化指标和16S r RNA基因序列比对分析,将该菌株鉴定为枯草芽孢杆菌(Bacillus subtilis),并对其产酶条件和部分酶学特性进行实验研究,结果显示:该菌株最佳产酶条件为:时间为48 h,温度为37℃;初始pH为7;装液量为80 mL,碳源为葡萄糖,氮源为牛肉膏。该蛋白酶的作用最适温度为40℃,反应最适pH为7.5。在最适条件下,X-34菌株产生的蛋白酶活力达到1558 U/mL。  相似文献   

10.
从云南安宁温泉周围土壤中筛选到一株热稳定性能较好的β-葡聚糖酶产生菌W-9,并对其发酵条件及酶学特性进行初步研究。该菌株发酵72h在pH6.0,70℃条件下酶活性为82.64U/mL。对W-9所产β-葡聚糖酶的酶学性质进行研究,结果显示,β-葡聚糖酶的最适反应pH为6.0,最适反应温度为70℃,70℃条件下保温时,酶活基本稳定。  相似文献   

11.
利用筛选培养基从不同豆制品作坊附近的土样中筛选出一株产α-半乳糖苷酶的菌株D-1,对其进行分子鉴定及所产的α-半乳糖苷酶进行酶学特性研究。研究表明,菌株D-1为Aspergillus niger,此菌株所产α-半乳糖苷酶的最适反应温度是55℃,在60℃以下热稳定性较好;最适反应pH值为5.0,在pH值3.0~5.5范围内稳定性较好,相对酶活>64.1%;Mg2+、Na+、Pb2+、K+、Mn2+、Co2+、Al3+对α-半乳糖苷酶均有不同程度的抑制作用,其中Cu2+和Fe3+的抑制作用较为明显,而Ca2+、EDTA(乙二胺四乙酸)、Zn2+对α-半乳糖苷酶有一定的促进作用。  相似文献   

12.
本试验旨在通过角质降解菌株X8P的种属鉴定、发酵条件优化和酶学性质研究,探讨降解植物表面角质层,进一步改善动物对植物纤维利用的可能新方案。试验通过形态观察和16 S r DNA测序鉴定菌株X8 P种属,并对其产酶所需碳源、氮源、发酵温度与时间进行优化,其发酵液经硫酸铵盐析沉淀获得其胞外蛋白粗酶,并对其粗酶催化的适宜p H和p H稳定性、温度和温度稳定性,以及有机溶剂、表面活性剂和金属离子对其活性的影响进行研究。结果表明:1)菌株X8P经形态观察和分子鉴定为东方醋杆菌(Acetobacter orientalis)。2)菌株X8P适宜产酶发酵条件为溶菌肉汤(LB)培养基中37℃发酵4 d,1%橄榄油和1%葡萄糖明显促进菌株产酶,而1%可溶性淀粉明显抑制菌株产酶。3)该菌株胞外粗酶催化适宜p H和温度分别为6.5和45℃,且表现出一定p H稳定性,但在有机溶剂中不稳定,仅甘油中可保留全部活性,在二甲基亚砜(50%)中活性可保留66%。吐温(Tween)-20(1 mmol/L)、Tween-80(1 mmol/L)和聚乙二醇辛基苯基醚(1和10 mmol/L)可使菌株X8P粗酶活性提高3%~35%。金属离子钾离子(K+)、锰离子(Mn2+)(1和10 mmol/L)可使菌株X8P粗酶活性提高2%~20%。由此可见,菌株X8P具有一定的产角质酶潜力和应用前景,可进一步深入研究。  相似文献   

13.
Acetylcholinesterase (EC 3.1.1.7) activity was demonstrated in whole worm homogenates of adult Ascaridia galli with acetylthiocholine as substrate. The pH optimum was not measurable because of an autohydrolysis of the substrate. The Michaelis constant (Km) was 4 mM with saturation by excess substrate. Optimum enzyme activity was noted at a protein concentration of 200 mg/ml assay medium and at a temperature of 37 degrees C. Arrhenius plot of temperature dependence of the enzyme activity showed an energy of activation (delta Ea) of 28.962 K joule/mole above, and 25.448 K joule/mole below, the transition temperature (37 degrees C). Complete inhibition by eserine (physostigmine), a specific and classical acetylcholinesterase inhibitor, established the identity of the enzyme. A marginally higher enzyme activity was observed in females than in males as well as in homogenates from worms of mixed sexes. The enzyme was markedly activated by divalent metal cations such as Fe2+, Mg2+, Cd2+, Cu2+, Zn2+ and Ca2+, while Co2+ and Mn2+ inhibited the activity. Piperazine adipate at a concentration of 10(-3) M caused 45.5% and albendazole, a benzimidazole anthelmintic, 37.5% inhibition in the enzyme activity, while levamisole and mebendazole proved to be practically ineffective, causing an inhibition of 12 and 9%, respectively.  相似文献   

14.
张剑韵  黄龙全 《蚕业科学》2003,29(3):255-259
共轭酶 (EC 3 4 2 2 12 )和二氢叶酸还原酶 (EC 1 5 1 3)是生物体内重要的叶酸代谢酶。以家蚕幼虫为材料分析了这两种酶的基本性质。 5龄幼虫体液共轭酶反应的最适pH为 7 8,最适温度为 5 0℃ ;反应体系中添加巯基乙醇、K+ 或Mg2 + 可显著提高酶活性 ,而对羟高汞苯磺酸、Co2 + 、Zn2 + 、Fe2 + 等对酶活性具有明显的抑制作用 ;以叶酸五谷氨酸为基质的水解产物为叶酸 ;另以叶酸三谷氨酸为底物 ,采用 33mmol/LHepse Ches缓冲液 (pH 7 8)在 37℃的反应条件下 ,求得Km 为 9 6 μmol/L。幼虫脂肪体等组织中二氢叶酸还原酶以NADPH为供氢体 ;在pH 4 5~7 5的范围内具有较强活性 ,最适反应温度 35℃ ;巯基乙醇、胍 ,以及高浓度的 1价金属离子 (K+ 、Na+ 等 )对酶具有活性化作用 ,对氯高汞苯甲酸、甲酰胺、Co2 + 等具有强烈的抑制作用 ;采用 35mmol/L柠檬酸 磷酸钠缓冲液 (pH 5 .0 ,10g/L抗坏血酸 )在 30℃的反应条件下 ,求得Km 值为 2 7μmol/L。家蚕体液可作为共轭酶的新酶源而加以利用。  相似文献   

15.
纤维素降解细菌的筛选、生物学特性及降解效果   总被引:1,自引:0,他引:1  
为了从东祁连山高寒草甸土壤中分离筛选纤维素分解细菌,本研究根据在羧甲基纤维素钠培养基和滤纸平板培养基上的生长情况,初步筛选出3株具有较强纤维素分解能力的细菌,并对其生长条件进行了初步研究,结果表明,3株菌的最适生长温度范围为25~30℃;最适生长pH因菌种不同位于5~8之间;最适生长盐浓度位于4%~5%。菌株X1-2具有较好降解特性,根据形态观察、革兰氏染色及16SrRNA系统发育比较,鉴定该菌为芽孢杆菌(Bacillus sp.),是一株十分具有开发生产纤维素酶能力的菌株。  相似文献   

16.
为研究金黄色葡萄球菌胞外分泌蛋白的核酸酶活性,本研究复苏培养金黄色葡萄球菌后取培养上清液,采用透析得到金黄色葡萄球菌胞外分泌蛋白,结果显示获得的该蛋白浓度为48.5μg/mL。采用琼脂糖凝胶电泳法、琼脂扩散法和琼脂培养法检测金黄色葡萄球菌胞外分泌蛋白的核酸酶活性,利用琼脂糖凝胶电泳法探究温度、pH、金属离子对核酸酶活性的影响。结果显示,金黄色葡萄球菌胞外分泌蛋白表现出降解λDNA的核酸酶活性,且最适温度和pH值分别为50℃和9.0,在低温和酸性条件下核酸酶的活性较弱,但胞外核酸酶对70℃以上的耐受性较差。不同浓度的Ba^2+、Mg^2+和Zn^2+对胞外分泌蛋白的核酸酶活性无影响;低浓度(0.01 mmol/L^1 mmol/L)的Ca^2+、Ni^2+、Cu^2+和Mn^4+可以促进胞外核酸酶切割λDNA的活性;高浓度的Na^+、K^+和Fe^3+可以提高胞外核酸酶切割λDNA的活性;添加Co^2+(0.01 mmol/L^10 mmol/L)可以促进胞外分泌蛋白的核酸酶活性。本研究证实了金黄色葡萄球菌胞外分泌蛋白的核酸酶活性,为进一步研究胞外分泌蛋白在金黄色葡萄球菌和宿主互作中的确切作用奠定了基础。  相似文献   

17.
在酶制剂生产加工和储存过程中,酶活稳定性是酶应用过程中最常遇到的实际问题。本文研究不同载体、高温高湿、金属离子、保存初始pH值、保护剂浓度和存储时间对体外α-半乳糖苷酶稳定性的影响。试验结果表明:①无机载体碳酸钙、元明粉和滑石粉对α-半乳糖苷酶活性影响很大,收率均为0%;有机载体中玉米皮粉效果最好,收率高达90.83%;其次是淀粉,收率为61.11%;稻壳粉收率最低,仅为44.72%。②湿度为17%,温度小于85℃,酶活损失率小于10%,说明该酶有较强的耐温能力,温度为90℃,酶活损失率达到16.2%,随着温度上升,酶活损失率开始增加,不利于酶活的保存。③Cu2+对该酶有抑制作用3,7℃恒温水浴4 h后酶活存留率仅为74%,Mn2+、Zn2+、Ca2+、Na+、K+和Mg2+对α-半乳糖苷酶有几近相同的保护作用,酶活存留率均大于92%。④该酶最适保存pH值为5.3;pH值为4.4时,酶活损失率达到30.1%,不利于酶的保存;pH值为5.6时,酶活损失率为3.77%,pH值在4.7~5.6之间,酶活损失率小于10%,有利于酶的保存。总之,过酸和过碱都不利于酶的保存。⑤1%NaCl、1%甘露醇、5%和7%的山梨醇都有杂菌产生,不利于酶的保存3;%~5%的NaCl酶活损失小于10%1,%和5%~7%的甘油酶活损失率小于5%,都有利于酶活保存。  相似文献   

18.
试验为研究纳豆芽孢杆菌NY-1产蛋白酶的酶学性质,在液体培养基中培养该菌株并获得粗酶液,之后分别在不同处理条件下对粗酶液中蛋白酶活性进行测定。结果表明,该酶最适反应温度为65 ℃,最适反应pH为9.0,45 ℃时有较好的热稳定性,pH 8.0~9.0有较好的pH稳定性。金属离子Mn2+和Zn2+对该蛋白酶活性有激活作用,Fe2+、Cu2+和Mg2+对酶活性有抑制作用。  相似文献   

19.
为研究1株高寒草地土壤真菌的产纤维素酶特性,采用微生物培养法和液体摇瓶发酵法,对供试菌株的培养特性和产酶特性进行了研究。结果表明:经ITS-rDNA分子鉴定,供试菌株初步确定为Thielavia hyalocarpa,供试菌株的最适生长温度为25℃;对不同的碳、氮源利用能力不同,在供试的5种碳源和氮源中,葡萄糖和蛋白胨分别为最适碳源和氮源,对5种碳源的利用表现为:葡糖糖 > 糊精、麦芽糖和淀粉 > 蔗糖菌株, H对5种氮源的利用表现为:蛋白质 > 硝酸钠 > 尿素 > 硫酸胺 > 磷酸胺;菌株H产的纤维素酶在pH 5.5和50℃下有较高的催化活性,产的木聚糖酶在pH为5和55℃温度下有较高的催化活性。  相似文献   

20.
HPr激酶/磷酸酶(PrkC/PrpC)系统在细菌和支原体中高度保守,不仅参与糖酵解酶类的磷酸化/去磷酸化,也与毒力、生物被膜等生命活动相关。克隆并突变获得编码鸡毒支原体磷酸酶PrpC的ptc1基因,经原核表达纯化后,利用底物PNPP体外检测其酶活性,并对影响该酶活性的pH、金属离子、温度等影响因子进行分析。结果表明,Ptc1蛋白具有磷酸酶活性,Mn2+为该酶辅因子,最适离子浓度为2mol/L,最适pH为8.5,最适温度为37℃。相同浓度的Li+、Na+、K+、Mg2+、Ca2+、Ba2+、Al 3+、Hg2+等金属离子均对表达产物具有不同程度的抑制活性。初步建立了PrpC功能检测体系,为进一步深入研究PrkC/PrpC调节系统奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号