首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The objective of this study was to establish a repeatable, standardized laboratory procedure for monitoring the development of antimicrobial resistance in bacteria isolated from animals and food of animal origin in South Africa, with reagents prepared in-house. The emergence of resistance and the spread of resistant bacteria can be limited by implementing a veterinary antimicrobial drug policy, in which inter alia systematic monitoring and prudent use play essential roles. The bacteria included in this study represented three different categories, namely zoonotic bacteria (Salmonella), indicator bacteria (Escherichia coli, Enterococcus faecalis and Enterococcus faecium) and veterinary pathogens (Mannheimia haemolytica). Thirty isolates of each species were collected with the aim of standardizing the laboratory methodology for a future national veterinary surveillance and monitoring programme. Susceptibility to ten selected antimicrobial drugs was determined by means of minimum inhibitory concentrations (MICs) using the microdilution method. The method according to the National Committee for Clinical Laboratory Standards was used as the standard. Multi-well plates containing varying dilutions of antimicrobial drugs and prepared in-house for MIC determinations, yielded repeatable results. Storage of plates for 2 months at -70 degrees C did not influence results meaningfully. Within this limited sample of bacteria, MIC results did not indicate meaningful resistance against any of the ten selected antimicrobial drugs. The findings of the study will be used to establish a national veterinary antimicrobial resistance surveillance and monitoring programme in South Africa. To allow for international comparison of data, harmonisation of the surveillance and monitoring programme in accordance with global trends is encouraged. Ideally it should be combined with a programme monitoring the quantities of antimicrobial drugs used. The aim is to contribute to slowing down the emergence of resistance and the problems associated with this phenomenon by means of the rational use of antimicrobial drugs.  相似文献   

2.
Antimicrobial agent usage data are essential for focusing efforts to reduce misuse and overuse of antimicrobial agents in food producing animals because these practices may select for resistance in bacteria of animals. Transfer of resistant bacteria from animals to humans can lead to human infection caused by resistant pathogens. Resistant infections can lead to treatment failures, resulting in prolonged or more severe illness. Multiple World Health Organization (WHO) reports have concluded that both antimicrobial resistance and antimicrobial usage should be monitored on the national level. The system for collecting antimicrobial usage data should be clear and transparent to facilitate trend analysis and comparison within and among countries. Therapeutic, prophylactic and growth promotion use should be recorded, along with route of administration and animal species and/or production class treated. The usage data should be compared to resistance data, and the comparison should be made available in a timely manner. In the United States, surveillance of antimicrobial resistance in foodborne bacteria is performed by the National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria, however, the United States still lacks a mechanism for collecting antimicrobial usage data. Combined with antimicrobial resistance information from NARMS, antimicrobial usage data will help to direct education efforts and policy decisions, minimizing the risk that people will develop antimicrobial resistant infections as a result of eating food of animal origin. Ultimately mitigation strategies guided by usage data will be more effective in maintaining antimicrobial drugs for appropriate veterinary use and in protecting human health.  相似文献   

3.
In-vitro susceptibility testing provides valuable informations for choosing the most suitable antimicrobial agent for the control of bacterial infections in animals. Different diffusion and dilution methods, as conducted according to various approved performance standards, can be used to determine the in-vitro susceptibility of bacterial pathogens. In the present article, problems are discussed which arise from the use of different methods and the difficulty to interpret such results. While most approved performance standards were designed for testing of bacteria from human sources, the NCCLS document M31-A2 exclusively focusses on susceptibility testing of bacteria isolated from animals and--in contrast to all other standards--includes veterinary specific breakpoints for a number of antimicrobial agents used in veterinary medicine. Therefore, performance of in-vitro susceptibility testing of veterinary pathogens should follow the recommendations given in the NCCLS document M31-A2. The microdilution method is recommended as the method of choice for susceptibility testing. The result of a microdilution test is given as the minimum inhibitory concentration (MIC). This value provides a quantitative result which precisely indicates the degree of susceptibility of the tested bacterial strain and in return gives the veterinarian a clear guidance whether therapeutic intervention with the antibiotic in question will be successful.  相似文献   

4.
Besides their role as commensals on the skin and mucosal surfaces, staphylococci may be involved in a wide variety of diseases in animals. Staphylococcal infections in animals are mainly treated with antimicrobial agents and as a consequence, staphylococci from animal sources have developed and/or acquired resistance to the respective antimicrobial agents. Resistance statistics obtained from national monitoring programmes on staphylococci from cattle and pigs, but also from surveillance studies on staphylococci involved in diseases in dogs are reported and reviewed with regard to their comparability. This review mainly focusses on the genetic basis of antimicrobial resistance in staphylococci of animal origin. Particular attention is paid to resistance to those antimicrobial agents which are most frequently used in veterinary medicine, but also to antimicrobial agents, such as chloramphenicol and mupirocin, which are used in specific cases for the control of staphylococcal infections in pets and companion animals. In addition, plasmids and transposons associated with the respective resistance properties and their ways of spreading between members of the same or different staphylococcal species, but also between staphylococci and other gram-positive bacteria, are described.  相似文献   

5.
beta-Lactams are among the most clinically important antimicrobials in both human and veterinary medicine. Bacterial resistance to beta-lactams has been increasingly observed in bacteria, including those of animal origin. The mechanisms of beta-lactam resistance include inaccessibility of the drugs to their target, target alterations and/or inactivation of the drugs by beta-lactamases. The latter contributes predominantly to beta-lactam resistance in Gram-negative bacteria. A variety of beta-lactamases have been identified in bacteria derived from food-producing and companion animals and may further serve as a reservoir for beta-lactamase-producing bacteria in humans. While this review mainly describes beta-lactamases from animal-derived Escherichia coli and Salmonella spp., beta-lactamases from animal-derived Campylobacter spp., Enterococcus spp., Staphylococcus spp. and other pathogens are also discussed. Of particular concern are the increasingly-isolated plasmid-encoded AmpC-type CMY and extended-spectrum CTX-M beta-lactamases, which mediate acquired resistance to extended-spectrum beta-lactams. The genes encoding these enzymes often coexist with other antimicrobial resistance determinants and can also be associated with transposons/integrons, increasing the potential enrichment of multidrug resistant bacteria by multiple antimicrobial agents as well as dissemination of the resistance determinants among bacterial species. Characterization of beta-lactam-resistant animal-derived bacteria warrants further investigation of the type and distribution of beta-lactamases in bacteria of animal origin and their potential impact on human medicine.  相似文献   

6.
Antimicrobial drug use in veterinary medicine   总被引:1,自引:0,他引:1  
Recognizing the importance of antimicrobial resistance and the need for veterinarians to aid in efforts for maintaining the usefulness of antimicrobial drugs in animals and humans, the Board of Regents of the American College of Veterinary Internal Medicine charged a special committee with responsibility for drafting this position statement regarding antimicrobial drug use in veterinary medicine. The Committee believes that veterinarians are obligated to balance the well-being of animals under their care with the protection of other animals and public health. Therefore, if an animal's medical condition can be reasonably expected to improve as a result of treatment with antimicrobial drugs, and the animal is under a veterinarian's care with an appropriate veterinarian-client-patient relationship, veterinarians have an obligation to offer antimicrobial treatment as a therapeutic option. Veterinarians also have an obligation to actively promote disease prevention efforts, to treat as conservatively as possible, and to explain the potential consequences associated with antimicrobial treatment to animal owners and managers, including the possibility of promoting selection of resistant bacteria. However, the consequences of losing usefulness of an antimicrobial drug that is used as a last resort in humans or animals with resistant bacterial infections might be unacceptable from a public or population health perspective. Veterinarians could therefore face the difficult choice of treating animals with a drug that is less likely to be successful, possibly resulting in prolonged or exacerbated morbidity, to protect the good of society. The Committee recommends that voluntary actions be taken by the veterinary profession to promote conservative use of antimicrobial drugs to minimize the potential adverse effects on animal or human health. The veterinary profession must work to educate all veterinarians about issues related to conservative antimicrobial drug use and antimicrobial resistance so that each individual is better able to balance ethical obligations regarding the perceived benefit to their patients versus the perceived risk to public health. Specific means by which the veterinary profession can promote stewardship of this valuable resource are presented and discussed in this document.  相似文献   

7.
Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets.  相似文献   

8.
美国兽用抗菌药耐药性管理   总被引:1,自引:1,他引:0  
全面介绍了美国兽用抗菌药耐药性的管理机构和管理措施,希望为我国兽药耐药性相关政策的制定和措施的实行提供一定的依据和参考。  相似文献   

9.
Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram‐negative bacteria, and due to the detection of determinants of resistance such as Extended‐spectrum beta‐lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed.  相似文献   

10.
欧盟兽用抗菌药耐药性管理概述   总被引:1,自引:0,他引:1  
介绍负责管理欧盟兽用抗菌药耐药性的欧洲药品局下设的兽用药品委员会、健康与消费者保护司和食品安全局等相关管理机构以及成立耐药性管理工作组、进行耐药性风险分析、制定相关文件和实施耐药性监测等的管理措施,为我国兽药耐药性相关政策的制定和措施的实行提供参考.  相似文献   

11.
The application of antimicrobial agents has proved to be the main risk factor for development, selection and spread of antimicrobial resistance. This link applies to the use of antimicrobial agents in human and in veterinary medicine. Furthermore, antimicrobial-resistant bacteria and resistant genes can be transmitted from animals to humans either by direct contact or via the food chain. In this context, risk management has to be discussed regarding prevention and control of the already existing antimicrobial resistance. One of the primary risk management measures in order to control the development and spread of antimicrobial resistances is by regulating the use of antimicrobial agents and subjecting their use to guidelines. Thereby, the occurrence of antimicrobial resistant bacteria in the human and veterinary habitat can be controlled to a certain degree. There is little information about past attempts to prevent the development of resistances or to control them, and even less is known about the effectiveness or the cost intensiveness of such efforts. Most of the strategies focus on preventing and controlling antimicrobial resistance by means of the reduction or limitation of the use of antimicrobial agents in food-producing animals.  相似文献   

12.
Objective: To review the human and companion animal veterinary literature on nosocomial infections and antimicrobial drug resistance as they pertain to the critically ill patient. Data sources: Data from human and veterinary sources were reviewed using PubMed and CAB. Human data synthesis: There is a large amount of published data on nosocomially‐acquired bloodstream infections, pneumonia, urinary tract infections and surgical site infections, and strategies to minimize the frequency of these infections, in human medicine. Nosocomial infections caused by multi‐drug‐resistant (MDR) pathogens are a leading cause of increased patient morbidity and mortality, medical treatment costs, and prolonged hospital stay. Epidemiology and risk factor analyses have shown that the major risk factor for the development of antimicrobial resistance in critically ill human patients is heavy antibiotic usage. Veterinary data synthesis: There is a paucity of information on the development of antimicrobial drug resistance and nosocomially‐acquired infections in critically ill small animal veterinary patients. Mechanisms of antimicrobial drug resistance are universal, although the selection effects created by antibiotic usage may be less significant in veterinary patients. Future studies on the development of antimicrobial drug resistance in critically ill animals may benefit from research that has been conducted in humans. Conclusions: Antimicrobial use in critically ill patients selects for antimicrobial drug resistance and MDR nosocomial pathogens. The choice of antimicrobials should be prudent and based on regular surveillance studies and accurate microbiological diagnostics. Antimicrobial drug resistance is becoming an increasing problem in veterinary medicine, particularly in the critical care setting, and institution‐specific strategies should be developed to prevent the emergence of MDR infections. The collation of data from tertiary‐care veterinary hospitals may identify trends in antimicrobial drug resistance patterns in nosocomial pathogens and aid in formulating guidelines for antimicrobial use.  相似文献   

13.
National surveillance programs on antimicrobial usage and antimicrobial resistance in animals have been established in various countries but few of them include bacteria from pets. The objectives of this study were to assess the prevalence of antimicrobial resistance in healthy dogs and to search for resistance phenotypes of clinical relevance. Escherichia coli and Enterococcus spp. were isolated from faecal swabs obtained from 127 dogs. Disk diffusion was used to measure antimicrobial susceptibility in 117 Escherichia coli, 10 Enterococcus faecium and 51 Enterococcus faecalis of canine origin. Resistance was relatively low compared with food animal species in Denmark. All Escherichia coli isolates were susceptible to broad-spectrum aminopenicillins, third generation cephalosporins and fluoroquinolones. Despite the low prevalence of resistance, statistical analysis of questionnaire data revealed a significant association (p=0.02) between recent antimicrobial treatment and resistance in Escherichia coli. Interestingly, two dogs were found to shed Enterococcus faecium resistant to ampicillin. Multilocus sequence typing of these isolates indicated that the two isolates belonged to sequence types associated with human nosocomial infections, and one (ST-192) was genetically related to human epidemic clonal complex 17. The detection of ampicillin-resistant Enterococcus faecium warrants further studies on the prevalence of these bacteria in dogs and on the possible implications to both animal and human health. The results suggest that distinct methods for detection and assessment of antimicrobial resistance in animals should be considered depending on the target animal species and the purposes of the study.  相似文献   

14.
Nosocomial infections and antimicrobial resistance are topics that have been intensely studied in human medicine because of their significant impact on human health. In recent years, concerns have been raised that the use of antibiotics in veterinary medicine, animal husbandry, and agriculture may be contributing to the development of resistance in common bacterial species affecting human beings. Although there is inadequate proof at this time that the resistance is transmitted from animals to people, if antibiotics continue to be used indiscriminately in veterinary medicine, veterinarians may find themselves facing regulations restricting the use of some antibiotics. Nosocomial infections have been reported in veterinary medicine and are likely to increase in prevalence with the increase in intensive care practices in many hospitals. Prolonged hospitalization and the use of invasive devices and procedures increase the risk of nosocomial disease. As in human medicine, organisms isolated in the nosocomial infections reported in veterinary patients have an increasingly broad spectrum of antimicrobial resistance. Despite these findings, the use of empiric and prophylactic antibiotic therapy is still widespread in veterinary medicine. Nosocomial infections and antimicrobial resistance may have a serious impact on the future of [table: see text] veterinary medicine, because the cost and ability to treat our patients may be affected by the loss of access to or effectiveness of antimicrobial drugs. Despite the millions of dollars spent on research to reduce the incidence of nosocomial infections in human patients, the strategies that have consistently proven successful are simple and inexpensive to implement. The most important factor in preventing nosocomial infections is improving the hygiene practices of health care providers. Hand-washing or the use of disposable gloves can dramatically reduce the transmission of bacteria between patients. Aseptic technique should be used in the placement and management of all invasive devices. All staff members should be educated on the risks and symptoms associated with nosocomial infections so that cases can be detected early and treated appropriately. We in the veterinary profession have the opportunity to learn from the experiences of the human medical profession and can take steps to prevent the escalation of nosocomial infections and their impact on our profession.  相似文献   

15.
The total quantity of use in companion animals is generally believed to be relatively small in comparison with antimicrobial use in food animals. Use in companion animals is principally for treatment, whereas the greater proportion of use in food animals is for prophylaxis, metaphylaxis and growth promotion. Therefore, it is important to collect data on end use in companion animals so that overall estimates of use in companion animals can be generated and separated from estimates for food animals. However, data from antimicrobial use in companion animals are extremely limited and no serious attempts to collect such data have ever been made in the United States. The lack of usage data in is concomitant with the dearth of information on antimicrobial resistance in companion animals. Companion animals have been involved in the transmission to humans of, or become infected with, foodborne zoonotic bacteria such as Salmonella and Campylobacter. Companion animals are an integral part of the ecology of antimicrobial resistance through their contact with food animals and exposure to antimicrobials for disease treatment and through contact with humans and the environment. In the practice of companion animal medicine, antimicrobial use data are important for understanding the potential impact on companion animal heath posed by antimicrobial resistance transferred from food animals, humans and the environment, and the threat to humans and other companion animals posed by antimicrobial use in companion animals. Basic information on the patterns and quantities of antimicrobial use in combination with resistance surveillance data, could help companion animal veterinarians understand the potential for development, or evidence of, an antimicrobial resistance problem in their practices, the role of companion animals in the overall epidemiology of antimicrobial resistance, and for comparison with local, regional, or national data. The combination of data from either a sentinel site system of clinics or a use survey with national data from the pharmaceutical industry should provide sufficient data to credibly estimate the total volume and patterns of antimicrobial use in companion animal medicine. The time and effort for use monitoring or to complete a survey would likely become burdensome. Practice management software now utilized at most companion animal clinics could be used to generate antimicrobial use data as well as patient population data as surrogate for the true population at risk for patient encounters in a companion animal practice.  相似文献   

16.
The vast literature on antimicrobial drug use in animals has expanded considerably recently as the antimicrobial resistance (AMR) crisis in human medicine leads to questions about all usage of antimicrobial drugs, including long-term usage in intensively managed food animals for growth promotion and disease prevention. Attention is also increasingly focusing on antimicrobial use and on bacterial resistance in companion animals, which are in intimate contact with the human population. They may share resistant bacteria with their owners, amplify resistant bacteria acquired from their owners, and act as a reservoir for human infection. Considerable effort is being made to describe the basis of AMR in bacterial pathogens of animals. Documentation of many aspects of use of antimicrobials in animals is, however, generally less developed and only a few countries can describe quantities of drugs used in animals to kg levels annually. In recent years, many national veterinary associations have produced 'prudent use guidelines' to try to improve antimicrobial drug use and decrease resistance, but the impact of guidelines is unknown. Within the evolving global movement for 'antimicrobial stewardship', there is considerable scope to improve many aspects of antimicrobial use in animals, including infection control and reduction of use, with a view to reducing resistance and its spread, and to preserving antimicrobial drugs for the future.  相似文献   

17.
The epidemic of antimicrobial resistant infections continues to challenge, compromising animal care, complicating food animal production and posing zoonotic disease risks. While the overall role of therapeutic antimicrobial use in animals in the development AMR in animal and human pathogens is poorly defined, veterinarians must consider the impacts of antimicrobial use in animal and take steps to optimize antimicrobial use, so as to maximize the health benefits to animals while minimizing the likelihood of antimicrobial resistance and other adverse effects. This consensus statement aims to provide guidance on the therapeutic use of antimicrobials in animals, balancing the need for effective therapy with minimizing development of antimicrobial resistance in bacteria from animals and humans.  相似文献   

18.
兽用抗菌药耐药性已经成为一个全球普遍关注的公共健康问题,各国际组织都积极采取相应的措施控制耐药性的产生和蔓延。介绍了国际组织世界动物卫生组织OIE制定的五个国际标准,包括协调抗菌药耐药性监督和检测程序指南、畜牧业抗菌药消耗量监测指南、兽用抗菌药慎用指南、抗菌药敏感性检测的实验室方法指南、动物源抗菌药耐药性对公共健康潜在影响的风险分析方法指南,以期为我国政策制定者和决策者参照国际标准制定出符合我国国情的耐药性相关指南。  相似文献   

19.
Antimicrobials are essential for treatment of sick animals, but even if used correctly, may eventually lead to antimicrobial resistance. While this represents a potential hazard to humans, the great majority of resistant human pathogens, especially the more important ones, are unrelated to animal sources. A survey of informed medical opinion suggested that of the human antimicrobial resistance problem, <4% was seen as potentially linked to animal sources. This proportion related largely to zoonotic bacteria which by definition have the capacity to carry resistance between species, although the evidence for resulting harm remains limited. A recent study compared resistance among chicken, pig and cattle isolates of Salmonella spp., Campylobacter spp. and Escherichia coli from a series of EU countries. When tested against antimicrobial agents, this survey showed variation of resistance between countries, between hosts and between organisms. Such variation may give insight into preferred methods of antimicrobial administration or disease control, but it is clear that the epidemiology of antimicrobial resistance induction and dissemination in animals remains complex and is yet to be fully understood.  相似文献   

20.
《中国兽药杂志》2012,46(9):50-53
动物源细菌耐药性问题不仅关系到动物的用药安全,也与公共卫生安全密切相关,日益引起各国的关注。中国兽医药品监察所从事动物源细菌耐药性检测工作10余年,对我国动物源细菌的耐药性状况进行了系统的调查。本文从动物源细菌耐药性监测工作的重要性、我国动物源细菌的耐药性状况、存在的问题以及应对策略四个方面进行了综述,以期对我国的动物源细菌耐药性监测工作起一定的参考作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号