首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解北京市宠物源细菌的抗菌药物耐药情况,2022年,笔者对北京市四个城区的四家宠物医院的犬、猫共计50份样本的肛拭子进行了研究。试验对样品中的大肠杆菌和肠球菌首先进行了分离培养和质谱鉴定,然后采用微量肉汤稀释法分析分离菌株的耐药表型。结果共分离出大肠杆菌25株、肠球菌25株(屎肠球菌14株、粪肠球菌11株)。大肠杆菌耐药率最高的2种抗菌药为四环素和氨苄西林,多重耐药菌占44%;肠球菌耐药情况较严重,粪肠球菌耐药率最高的抗菌药物为磺胺异噁唑,屎肠球菌耐药率最高的抗菌药物为磺胺异噁唑、头孢西丁和红霉素,二者多重耐药菌占分离株总数的100%。综上,北京地区宠物源大肠杆菌、肠球菌的耐药情况较为严峻,且多重耐药现象突出,需要加强对宠物抗菌药使用的监督与管理。  相似文献   

2.
The aim of this study was to investigate the prevalence of acquired antimicrobial resistance in the resident intestinal microbiota of cats and to identify significant differences between various cat populations. Escherichia coli, Enterococcus faecalis, E. faecium and Streptococcus canis were isolated as faecal indicator bacteria from rectal swabs of 47 individually owned cats, 47 cattery cats and 18 hospitalised cats, and submitted through antimicrobial sensitivity tests. The results revealed that bacteria isolated from hospitalised and/or cattery cats were more frequently resistant than those from individually owned cats. E. coli isolates from hospitalised cats were particularly resistant to ampicillin, tetracycline and sulfonamide. Both enterococci and streptococci showed high resistance to tetracycline and in somewhat lesser extent to erythromycin and tylosin. Most E. faecium isolates were resistant to lincomycin and penicillin. One E. faecalis as well as one E. faecium isolate from hospitalised cats showed 'high-level resistance' (MIC > 500 microg/ml) against gentamicin, a commonly used antimicrobial agent in case of human enterococcal infections. The results of this research demonstrate that the extent of acquired antimicrobial resistance in the intestinal microbiota of cats depends on the social environment of the investigated population. It is obvious that the flora of healthy cats may act as a reservoir of resistance genes.  相似文献   

3.
Antimicrobial resistance is an emerging concern to public health, and food-producing animals are known to be a potential source for transmission of resistant bacteria to humans. As legislation of the European Union requires to ban conventional cages for the housing of laying hens on the one hand, and a high food safety standard for eggs on the other hand, further investigations about the occurrence of antimicrobial resistance in alternative housing types are required. In this study, we determined antimicrobial resistance in indicator bacteria from 396 cloacal swabs from 99 Swiss laying hen farms among four alternative housing types during a cross-sectional study. On each farm, four hens were sampled and exposure to potential risk factors was identified with a questionnaire. The minimal inhibitory concentration was determined using broth microdilution in Escherichia coli (n=371) for 18 antimicrobials and in Enterococcus faecalis (n=138) and Enterococcus faecium (n=153) for 16 antimicrobials. All antimicrobial classes recommended by the European Food Safety Authority for E. coli and enterococci were included in the resistance profile. Sixty per cent of the E. coli isolates were susceptible to all of the considered antimicrobials and 30% were resistant to at least two antimicrobials. In E. faecalis, 33% of the strains were susceptible to all tested antimicrobials and 40% were resistant to two or more antimicrobials, whereas in E. faecium these figures were 14% and 39% respectively. Risk factor analyses were carried out for bacteria species and antimicrobials with a prevalence of resistance between 15% and 85%. In these analyses, none of the considered housing and management factors showed a consistent association with the prevalence of resistance for more than two combinations of bacteria and antimicrobial. Therefore we conclude that the impact of the considered housing and management practices on the egg producing farms on resistance in laying hens is low.  相似文献   

4.
Distillers grains, a coproduct of ethanol production from cereal grains, are composed principally of the bran, protein, and germ fractions and are commonly supplemented in ruminant diets. The objective of this study was to assess the effect of feeding wet distillers grains with solubles (WDGS) and monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne and commensal bacteria in feedlot cattle. Cattle were fed 0 or 25% WDGS in steam-flaked corn-based diets with the addition of no antimicrobials, monensin, or monensin and tylosin. Fecal samples were collected from each animal (n = 370) on d 122 and 136 of the 150-d finishing period and cultured for Escherichia coli O157. Fecal samples were also pooled by pen (n = 54) and cultured for E. coli O157, Salmonella, commensal E. coli, and Enterococcus species. Antimicrobial resistance was assessed by determining antimicrobial susceptibilities of pen bacterial isolates and quantifying antimicrobial resistance genes in fecal samples by real-time PCR. Individual animal prevalence of E. coli O157 in feces collected from cattle fed WDGS was greater (P < 0.001) compared with cattle not fed WDGS on d 122 but not on d 136. There were no treatment effects on the prevalence of E. coli O157 or Salmonella spp. in pooled fecal samples. Antimicrobial susceptibility results showed Enterococcus isolates from cattle fed monensin or monensin and tylosin had greater levels of resistance toward macrolides (P = 0.01). There was no effect of diet or antimicrobials on concentrations of 2 antimicrobial resistance genes, ermB or tetM, in fecal samples. Results from this study indicate that WDGS may have an effect on the prevalence of E. coli O157 and the concentration of selected antimicrobial resistance genes, but does not appear to affect antimicrobial susceptibility patterns in Enterococcus and generic E. coli isolates.  相似文献   

5.
Bacteria with antimicrobial resistance can be transferred from animals to humans and may compromise antimicrobial treatment in case of infection. To determine the antimicrobial resistance situation in bacteria from Swiss veal calves, faecal samples from 500 randomly selected calves originating from 129 farms were collected at four big slaughterhouses. Samples were cultured for Escherichia coli, Enterococcus sp. and Campylobacter sp. and isolated strains were tested for antimicrobial susceptibility to selected antimicrobial agents by the minimal inhibitory concentration technique using the broth microdilution method. From 100 farms, data on farm management, animal husbandry and antimicrobial treatments of the calves were collected by questionnaire. Risk factors associated with antimicrobial resistance were identified by logistic regression. In total, 467 E. coli, 413 Enterococcus sp. and 202 Campylobacter sp. were isolated. Of those, 68.7%, 98.7% and 67.8%, respectively, were resistant to at least one of the tested antimicrobial agents. Resistance was mainly observed to antimicrobials frequently used in farm animals. Prevalence of resistance to antimicrobials important for human treatment was generally low. However, a rather high number of quinupristin/dalfopristin-resistant Enterococcus faecium and ciprofloxacin-resistant Campylobacter sp. were detected. External calf purchase, large finishing groups, feeding of milk by-products and administration of antimicrobials through feed upon arrival of the animals on the farm significantly increased the risk of antimicrobial resistance at farm level. Participation in a quality assurance programme and injection of a macrolide upon arrival of the animals on the farm had a protective effect. The present study showed that veal calves may serve as a reservoir for resistant bacteria. To ensure food safety, veal calves should be included in the national monitoring programme for antimicrobial resistance in farm animals. By improving farm management and calf husbandry the prevalence of resistance may be reduced.  相似文献   

6.
The objective of this study was to establish a repeatable, standardized laboratory procedure for monitoring the development of antimicrobial resistance in bacteria isolated from animals and food of animal origin in South Africa, with reagents prepared in-house. The emergence of resistance and the spread of resistant bacteria can be limited by implementing a veterinary antimicrobial drug policy, in which inter alia systematic monitoring and prudent use play essential roles. The bacteria included in this study represented three different categories, namely zoonotic bacteria (Salmonella), indicator bacteria (Escherichia coli, Enterococcus faecalis and Enterococcus faecium) and veterinary pathogens (Mannheimia haemolytica). Thirty isolates of each species were collected with the aim of standardizing the laboratory methodology for a future national veterinary surveillance and monitoring programme. Susceptibility to ten selected antimicrobial drugs was determined by means of minimum inhibitory concentrations (MICs) using the microdilution method. The method according to the National Committee for Clinical Laboratory Standards was used as the standard. Multi-well plates containing varying dilutions of antimicrobial drugs and prepared in-house for MIC determinations, yielded repeatable results. Storage of plates for 2 months at -70 degrees C did not influence results meaningfully. Within this limited sample of bacteria, MIC results did not indicate meaningful resistance against any of the ten selected antimicrobial drugs. The findings of the study will be used to establish a national veterinary antimicrobial resistance surveillance and monitoring programme in South Africa. To allow for international comparison of data, harmonisation of the surveillance and monitoring programme in accordance with global trends is encouraged. Ideally it should be combined with a programme monitoring the quantities of antimicrobial drugs used. The aim is to contribute to slowing down the emergence of resistance and the problems associated with this phenomenon by means of the rational use of antimicrobial drugs.  相似文献   

7.
One hundred Escherichia coli isolates from diseased and healthy pigs, cattle and broiler chickens were screened for the presence of tetracycline resistance genes tet(A), (B), (C), (D) or (E). The tet(A) gene was the most abundant (71% of the 100 isolates) followed by tet(B) (25%). The predominance of tet(A) and tet(B) applied to all three animal species, and there was no difference between the distribution of tet(A) and tet(B) genes among non-pathogenic and pathogenic E. coli in any of the animal species. The susceptibility of 20 of these isolates together with 10 tetracycline sensitive E. coli and 18 tetracycline resistant and 10 sensitive Enterococcus faecium to tetracyclines and tetracycline degradation products was determined. The resistant isolates showed reduced resistance to anhydrotetracycline, 4-epi-anhydrotetracycline, anhydrochlortetracycline and 4-epi-anhydrochlortetracycline. In general both the tetracycline resistant and susceptible E. faecium were more susceptible to the compounds tested than E. coli.  相似文献   

8.
Antimicrobial activities of 139 Enterococcus isolates (48 E. faecium and 91 E. faecalis) obtained from canine feces, boiler meat samples, swine feces, wild waterfowl feces, and human feces were examined against respective bacteria, including Streptococcus pyogenes, Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli. Bacteriocin (BAC) production assay revealed that the antimicrobial activity against at least one of 6 indicator strains (BAC+ phenotype) was found in 51 (37%) isolates (29 E. faecium and 22 E. faecalis). Twenty-four of 46 isolates positive for at least one of the enterocin structural genes (entA, entB, entL50AB, and cylL) showed a BAC+ phenotype. The existence of other enterocins or nonenterocin factors was implied because the BAC+ phenotype was detected in a total of 27 Enterococcus isolates that had none of the enterocin genes tested. The antimicrobial activity against Gram-negative strains (Salmonella Enteritidis and E. coli) was detected in the 6 Enterococcus isolates that had either the entA, entB, entL50AB or cylL genes. Moreover, the proportion of the antimicrobial activity against L. monocytogenes among the cylL-positive E. faecalis isolates showing beta-hemolysis (10/16) was significantly (p<0.01) higher than among those lacking beta-hemolysis (2/15). The results suggested that certain characteristics are likely to be associated with the antimicrobial activity against specific organisms.  相似文献   

9.
AIM: To determine the resistance to antibiotics among the indictor bacteria, Escherichia coli and Enterococcus spp, isolated from the faeces of healthy pigs on three conventional pig farms and one organic farm in the North Island of New Zealand. METHODS: Faecal samples, collected at intervals between March and October 2001, were plated onto MacConkey agar and Slanetz-Bartley agar and examined after 1-3 days incubation for colonies resembling E. coli and Enterococcus spp, respectively. Typical colonies were subcultured for further identification and storage. The isolates were tested for antibiotic resistance, using disc diffusion, to ampicillin, gentamicin, streptomycin, and tetracycline. Escherichia coli isolates were also tested for resistance to ciprofloxacin, cotrimoxazole and neomycin. Enterococcus spp isolates were also tested for resistance to vancomycin, erythromycin and virginiamycin. RESULTS: A total of 296 E. coli and 273 Enterococcus spp isolates were obtained from the three conventional farms, and 79 E. coli and 80 Enterococcus spp isolates were obtained from the organic farm. All the E. coli isolates from both the conventional and organic pig farms were susceptible to ciprofloxacin, and all the Enterococcus spp isolates were susceptible to ampicillin, gentamicin and vancomycin. Isolates of E. coli from conventional pig farms were resistant to gentamicin (0.7%), neomycin (0.7%), ampicillin (2.7%), cotrimoxazole (11%), streptomycin (25%) and tetracycline (60%). Enterococcus spp isolates from the same farms were resistant to erythromycin (68%), tetracycline (66%), streptomycin (54%) and virginiamycin (49%). By contrast, for the organic pig farm 相似文献   

10.
beta-Lactams are among the most clinically important antimicrobials in both human and veterinary medicine. Bacterial resistance to beta-lactams has been increasingly observed in bacteria, including those of animal origin. The mechanisms of beta-lactam resistance include inaccessibility of the drugs to their target, target alterations and/or inactivation of the drugs by beta-lactamases. The latter contributes predominantly to beta-lactam resistance in Gram-negative bacteria. A variety of beta-lactamases have been identified in bacteria derived from food-producing and companion animals and may further serve as a reservoir for beta-lactamase-producing bacteria in humans. While this review mainly describes beta-lactamases from animal-derived Escherichia coli and Salmonella spp., beta-lactamases from animal-derived Campylobacter spp., Enterococcus spp., Staphylococcus spp. and other pathogens are also discussed. Of particular concern are the increasingly-isolated plasmid-encoded AmpC-type CMY and extended-spectrum CTX-M beta-lactamases, which mediate acquired resistance to extended-spectrum beta-lactams. The genes encoding these enzymes often coexist with other antimicrobial resistance determinants and can also be associated with transposons/integrons, increasing the potential enrichment of multidrug resistant bacteria by multiple antimicrobial agents as well as dissemination of the resistance determinants among bacterial species. Characterization of beta-lactam-resistant animal-derived bacteria warrants further investigation of the type and distribution of beta-lactamases in bacteria of animal origin and their potential impact on human medicine.  相似文献   

11.
OBJECTIVE: To assess the prevalence and patterns of antimicrobial resistance among Escherichia coli strains isolated from the urine of women with cystitis or pyelonephritis and from fecal samples from dogs and healthy humans. DESIGN: Cross-sectional survey. SAMPLE POPULATION: Escherichia coli isolates from 82 women with cystitis, 170 women with pyelonephritis, 45 dogs, and 76 healthy human volunteers. PROCEDURE: Susceptibility to 12 antimicrobial agents was determined by means of disk diffusion testing as specified by the NCCLS. RESULTS: Overall, the 4 most common antimicrobial resistance patterns were resistance to ampicillin, sulfisoxazole, trimethoprim, and trimethoprim-sulfamethoxazole (n = 45 [12% of all isolates]); ampicillin alone (33 [9%]); ampicillin and sulfisoxazole (29 [8%]); and sulfisoxazole alone (14 [4%]). None of the isolates were resistant to ceftazidime, ciprofloxacin, nitrofurantoin, or piperacillin-tazobactam. Resistance was significantly more common and extensive among isolates from women with cystitis or pyelonephritis than among isolates from healthy humans or dogs. Resistance was least common among isolates from dogs. The only resistance phenotype that was more common among canine isolates than human isolates was resistance to sulfisoxazole alone. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that dogs are unlikely to be an important external reservoir of antimicrobial-resistant E. coli strains causing infections in humans. On the contrary the data suggest that dogs conceivably could acquire resistant E. coli strains from humans.  相似文献   

12.
为了解河南省某地区社区健康人源及动物(鸡、猪)源肠球菌种属分布及对多种抗菌药物的耐受情况,以及研究不同来源肠球菌的流行分布和抗菌药物耐药表型特点,本试验应用肠球菌选择性培养基对220份人源及动物源粪便样本进行肠球菌的分离培养,并对分离菌株采用16S rDNA序列分析结合API生化板条进行种属鉴定,纸片扩散法对分离肠球菌进行9种抗菌药物的敏感性检测.肠球菌分离及鉴定结果显示肠球菌总分离率、粪肠球菌分离率及屎肠球菌分离率在人源、鸡源、猪源3种来源间均差异显著(P<0.05):肠球菌总分离率为70.91%(156/220),猪源肠球菌分离率最高(86.00%),人源肠球菌分离率最低(62.63%),且人源与猪源肠球菌分离率差异显著(P<0.018);人源粪便样本中分离率最高的为屎肠球菌(31.36%),鸡源、猪源肠球菌中粪肠球菌分离率最高,分别为28.17%和32.00%.抗菌药物敏感性结果显示肠球菌对多种药物的耐药率在人源、鸡源、猪源3种来源间差异显著(P<0.05),且3种来源肠球菌的多药耐药率差异有统计学意义(P<0.05).人源肠球菌对红霉素(69.35%)、环丙沙星(37.10%)、氨苄西林(19.35%)等抗菌药物耐药率较其他来源的肠球菌要高;鸡源肠球菌对四环素(88.24%)、氟苯尼考(11.76%)、氯霉素(21.57%)等抗菌药物耐药率较其他来源的肠球菌要高;猪源肠球菌对抗菌药物耐药率总体较低,且其多药耐药率(7.84%)也低于人源(35.48%)及鸡源肠球菌(30.19%).提示,健康人及动物粪便样本中肠球菌种属分布不同及对抗菌药物耐药率有差别,并对多种常见抗菌药物耐药率较高,有关部门应加强社区人群及动物等非临床来源肠球菌耐药检查、监测,进而更好的了解中国耐药肠球菌的流行现状,更有效的控制耐药肠球菌的传播.  相似文献   

13.
Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.  相似文献   

14.
Enterococcus faecium strains of clonal complex (CC) 17 were isolated from domestic dogs. The strains were more prevalent in infectious isolates than in colonized isolates, suggesting that strains of the CC17 lineage may have an advantage in causing infections in dogs. The pulsed field gel electrophoresis patterns of some dog and human isolates were over 90% similar. However, antimicrobial resistance patterns and virulence factors were not identical, which might reflect different use of antimicrobials in veterinary medicine or in host specificity.  相似文献   

15.
Antimicrobials are essential for treatment of sick animals, but even if used correctly, may eventually lead to antimicrobial resistance. While this represents a potential hazard to humans, the great majority of resistant human pathogens, especially the more important ones, are unrelated to animal sources. A survey of informed medical opinion suggested that of the human antimicrobial resistance problem, <4% was seen as potentially linked to animal sources. This proportion related largely to zoonotic bacteria which by definition have the capacity to carry resistance between species, although the evidence for resulting harm remains limited. A recent study compared resistance among chicken, pig and cattle isolates of Salmonella spp., Campylobacter spp. and Escherichia coli from a series of EU countries. When tested against antimicrobial agents, this survey showed variation of resistance between countries, between hosts and between organisms. Such variation may give insight into preferred methods of antimicrobial administration or disease control, but it is clear that the epidemiology of antimicrobial resistance induction and dissemination in animals remains complex and is yet to be fully understood.  相似文献   

16.
为了确定采集自内蒙古地区某牧场的病料内的病原菌,对其进行细菌的分离培养。将分离培养出的2株病原菌进行16S rDNA扩增、细菌生化鉴定、致病性试验以及细菌耐药性试验。结果表明,分离菌在伊红美蓝琼脂培养基上可生长出暗红色或黑色并且带有金属光泽的菌落;镜检可见,分离菌为革兰阴性杆菌;分离菌生化鉴定结果与大肠杆菌标准菌株ATCC 25922测定的结果相一致;分离菌的16S rDNA与大肠杆菌标准菌株16S rDNA PCR扩增结果相一致;分离到的2株大肠杆菌均具有致病性,对多种抗生素均有耐药性。结果提示,该次分离得到的病原菌主要为具有多重耐药性的致病性大肠杆菌。  相似文献   

17.
A total of 417 isolates of Escherichia coli collected from five animal species/organ system combinations from swine [urinary/genital tract (UGT) incl. mastitis metritis agalactia syndrome], horses [genital tract (GT)] and dogs/cats [respiratory tract (RT), UGT and gastrointestinal tract (GIT)] were analysed quantitatively for their susceptibility against different antimicrobial agents by determination of minimum inhibitory concentrations. Regardless of which animal species the strains originated from, resistance appeared most frequently against sulfamethoxazole (18-59%), tetracycline (14-54 %), and ampicillin (14-39%). High percentages of intermediate isolates were observed for cephalothin (39-46 %). In general, low prevalences of resistance were detected for amoxicillin/clavulanic acid (1-4%), gentamicin (1-9%), and cefazolin (0-11%). Generally speaking, the antimicrobial resistance situation among E. coli isolates from horses and small animals is relatively good.  相似文献   

18.
Qualitative tests are used to monitor antimicrobial resistance in bacteria of animal origin in the Netherlands. Quantitative information on trends in resistance is thus not obtained. Moreover, in general a limited panel of antibiotics is tested. The present study describes resistance in zoonotic food-borne pathogens Salmonella, Campylobacter, and Escherichia coli O157 isolated from human clinical cases and from faeces of healthy food animals in 1998 and 1999, as determined with quantitative susceptibility tests. The resistance of the indicator organisms E. coli and Enterococcus faecium isolated from faecal samples of broilers and pigs randomly sampled at slaughterhouses was also determined. For this end, faecal samples from veal calves were sampled in 1996 and 1997 at the three main Dutch veal calf slaughterhouses. In 1998 only a limited number of faecal samples of veal calves were taken at farms. For E. coli and Salmonella the following antibiotics were tested: amoxicillin, amoxicillin-clavulanic acid, piperacillin, cefotaxime, ceftazidime, imipenem, gentamicin, doxycycline, trimethoprim, trimethoprim/sulphamethoxazole, ciprofloxacin, chloramphenicol, florfenicol, carbadox, and flumequine. For E. faecium the following antibiotics were tested: amoxicillin, amoxicillin-clavulanic acid, chloramphenicol, doxycycline, erythromycin, vancomycin, teicoplanin, streptomycin ('high level' > 2000 mg/ml), gentamicin ('high level' > 500 mg/ml), ciprofloxacin, bacitracin, flavofosfolipol, salinomycin, quinupristin-dalfopristin, virginiamycin, tilmicosin, avilamycin, and everninomycin. For Campylobacter the following antibiotics were tested: erythromycin, doxycycline, gentamicin, carbadox, flavofosfolipol, ciprofloxacin, trimethoprim/sulphamethoxazole, amoxicillin, and metronidazole.  相似文献   

19.
Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements.  相似文献   

20.
OBJECTIVE: To determine whether duration of hospitalization in the intensive care unit (ICU) of a veterinary teaching hospital was associated with prevalence of antimicrobial resistance among rectal Escherichia coli isolates from dogs, whether antimicrobial treatment was associated with prevalence of antimicrobial resistance, and whether there were associations among antimicrobial drugs to which isolates were resistant. DESIGN: Prospective observational study. ANIMALS: 116 dogs hospitalized in an ICU for >or= 3 days. PROCEDURES: Rectal swab specimens were obtained every 3 days and submitted for bacterial culture for E coli. Isolates were tested for susceptibility to 12 antimicrobial agents by means of disk diffusion. RESULTS: For each additional day that a dog was hospitalized in the ICU, the odds of being colonized with an E coli isolate resistant to 1 or more of the 12 antimicrobials tested increased by a factor of 1.5, independent of antimicrobial treatment. Dogs that were treated with enrofloxacin were 25.6 times as likely to be colonized by a quinolone-resistant E coli strain as were dogs that did not receive any antimicrobials. Significant correlations were found for resistance to agents in the extended-spectrum cephalosporin group and the quinolone group. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that the proportion of rectal E coli isolates obtained from dogs housed for >or= 3 days in a veterinary teaching hospital ICU that were resistant to antimicrobial agents increased as the duration of hospitalization in the ICU increased. Thus, ICU hospitalization time should be as short as possible to prevent development of antimicrobial resistance among rectal E coli isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号