首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
水稻淡绿叶基因PGL11的鉴定与精细定位   总被引:1,自引:1,他引:0  
【目的】叶片是水稻进行光合作用的主要场所,叶片颜色的变化与水稻的生长发育直接相关。发掘水稻叶色突变体,是水稻功能基因组学研究的重要遗传基础。【方法】利用EMS诱变日本晴获得一个能稳定遗传的淡绿叶突变体,暂命名为pgl11(pale green leaf 11)。在不同生育期测定野生型与突变体的叶绿素含量。在苗期,取野生型与突变体叶片进行叶绿体结构的透射电镜观察。在分蘖期,测定野生型与突变体的光合参数并观察气孔结构。在成熟期,测定野生型和pgl11的主要农艺性状。以pgl11为母本,南京6号为父本构建相应的F2群体,采用图位克隆的方法,对该基因进行定位。【结果】从苗期开始,突变体pgl11的每一片新叶均表现为淡绿色,叶绿素含量显著降低,叶绿体发育异常。随着叶片的生长,叶色由淡绿逐渐转绿,至抽穗期时叶绿素含量亦无明显差异。pgl11还表现光合速率、气孔导度明显下降,胞间CO_2浓度上升。扫描电镜观察发现,突变体pgl11的气孔发育异常。与野生型相比,突变体的农艺性状如株高、剑叶宽、二次枝梗数、每穗粒数、粒长、粒宽、千粒重以及结实率等均显著降低。对叶绿素合成、光合作用以及质体发育相关基因的表达量测定表明,突变体pgl11中参与叶绿体转录和翻译相关基因的表达量显著升高,而叶绿素合成和光合作用相关基因的表达量显著下降。遗传分析表明,该突变表型受一对隐性核基因控制。通过图位克隆的方法将该基因定位于第1染色体上的C6和C8标记之间,物理距离约为110 kb。【结论】该定位区间内未见有叶色相关基因报道,推测PGL11基因可能是一个新的水稻叶色基因。  相似文献   

2.
【目的】叶色突变相关基因的鉴定与克隆为研究叶绿体发育、叶绿素合成和光合作用等分子机制提供理论基础。【方法】从常规粳稻镇糯19杂交后代中分离出一个低温移栽后叶色转成白条纹的自然变异突变体,命名为wltt (white stripe leaf after transplanting at low temperature)。成熟期测定野生型和wltt的主要农艺性状,分别在苗期、移栽后15 d和同时期直播条件下测定新生叶片的色素含量并观察叶绿体的超微结构;将wltt和野生型正反交进行遗传分析;用wltt与籼稻9311杂交产生的F_2作为定位群体进行基因定位;采用RT-qPCR分析叶绿体发育、叶绿素合成和光合作用相关基因在野生型和wltt中的表达水平。【结果】wltt突变体在苗期表现正常绿色,移栽15 d后心叶出现白条纹叶表型,至分蘖末期心叶叶色恢复;而不经移栽,突变体不会出现白条纹叶。人工模拟实验表明该表型是由低温条件下根损伤引起的。与野生型相比,wltt突变体移栽后的新生叶色素含量显著降低,光合速率下降;同时株高变矮,穗长、剑叶长和每穗粒数均显著降低。叶绿体的超微结构显示,突变体的叶肉细胞中,仅少数细胞含有正常的叶绿体,其余大部分叶肉细胞不含叶绿体。进一步研究发现,突变体中部分光合系统相关基因和叶绿体发育相关基因表达下调,叶绿素生物合成相关的14个基因表达也下调。遗传分析表明,该突变性状受一对隐性核基因控制。利用wltt突变体/9311的F_2群体,将该基因定位于水稻第2染色体着丝粒附近853kb区间内。目前,该区间内没有叶色相关基因的报道。【结论】WLTT是低温条件下移栽调控叶片转色的关键基因,在叶绿体发育过程中发挥重要作用。  相似文献   

3.
【目的】叶色突变相关基因鉴定和克隆有助于研究光合作用,补充并完善叶绿体发育机理和色素合成代谢途径,为开展水稻的高光效育种提供理论依据。【方法】从粳稻品种Dongjin的组培后代中分离出一个白条纹突变体st13,成熟期测定野生型和st13的主要农艺性状,苗期测定色素含量并观察叶绿体的超微结构;将st13和Dongjin进行正反交,观察F_1植株表型,并对F_2表型分离进行卡方检验,对st13进行遗传分析;利用st13×南京11(籼稻品种)的F_2和F_(2:3)群体,对st13突变基因定位;采用qPCR分析叶绿体发育和叶绿素合成相关基因在st13与野生型相对表达量。【结果】与野生型Dongjin相比,该突变体的株高、单株有效穗数、穗长、结实率和千粒重等主要农艺性状显著下降。苗期的色素含量降低,分蘖期无差异。突变体的叶绿体中既有含丰富的类囊体膜结构的正常叶绿体,也存在无类囊体结构的叶绿体。遗传分析和基因定位结果表明,st13的突变表型受1对隐性核基因控制,突变基因位于第3条染色体长臂InDel(Insertion-Deletion)标记I3-21和I3-22之间。进一步在这两个标记之间设计了6对InDel标记,最终将基因定位在94kb区间内,此区间共有8个候选基因。【结论】这8个候选基因中,有5个假定的蛋白,其他三个都是有功能注释的蛋白,而这三个蛋白在水稻中均未见报道,因此,st13突变是由一个新的叶色基因突变引起的;同时st13中叶绿体发育、叶绿素合成和光合系统相关基因的表达也发生了显著改变,推测ST13可能是调控叶绿体发育的关键基因。  相似文献   

4.
 所用水稻叶色突变体为自然突变,并命名为白淮稻7号,其叶色表型为绿 白 绿,且突变表型只有在移栽等因素引起的机械损伤信号胁迫下才会产生。研究结果表明,叶色转白前,突变体生长态势、叶色、叶绿素a含量和叶绿体超显微结构与野生型差异不大;叶色转白后,突变体总叶绿素、叶绿素a、叶绿素b和类胡萝卜素含量都显著低于野生型和叶色转白前,而叶绿体中的类囊体逐渐降解,基粒片层减少、基粒数量明显减少,且在成熟后突变体叶色黄化、植株变矮小。遗传分析表明,突变性状由1对隐性核基因控制。以该突变体与江西1587的F2群体为定位群体,将突变基因定位于水稻第11染色体分子标记L59.2 7和L64.8 11之间大约740.5 kb的区间内。认为该突变基因是一个新的水稻叶色突变基因,暂命名为GWGL。  相似文献   

5.
【目的】对叶绿体发育相关基因进行克隆和功能分析,为解析叶绿体功能奠定分子基础。【方法】用甲基磺酸乙酯(EMS)处理籼稻9311获得一个条纹叶和白穗突变体slwp,通过色素分析和农艺性状观察分析该突变体的表型,通过图位克隆方法分离该基因,进一步利用定量PCR分析相关基因的表达情况。【结果】突变体slwp从2叶期开始至抽穗期表现出条纹叶表型,抽穗后幼穗白化,光合色素含量明显低于野生型;株高降低、抽穗延迟、产量降低等表型。该突变性状为单隐性核基因控制,该基因定位于水稻第6染色体短臂C6-4和N14标记之间0.91 Mb区间内。基因组测序表明核糖核苷二磷酸还原酶小亚基基因(RNRS1)编码区第776位点发生单碱基替换,导致甘氨酸突变为天冬氨酸;该基因与已报导的水稻基因St1GwsSt-wp为等位基因。通过对这4个等位基因的突变位点和表型进行分析,总结了该基因不同位点突变对植株表型的影响以及籼粳之间的差异。表达分析显示与叶绿素合成有关的基因受到不同程度调控,叶绿体发育第一和第二阶段基因上调表达,光合作用相关基因均下调表达。【结论】本研究分析了SLWP(RNRS1)基因不同位点的变异对水稻表型的影响,相关结果加深了对RNRS1基因功能的认识,有助于阐明叶绿体发育的分子机制。  相似文献   

6.
叶色突变体是研究叶绿素代谢、叶绿体发育和光合作用的重要材料。本研究从大麦鄂啤2号(野生型)7Li离子突变体库中筛选获得一份大麦阶段性低温诱导白化突变体(SLTW),该突变体受低温诱导后,于五叶期叶片开始出现白化现象,温度升高后于拔节期逐步恢复为绿色。与野生型相比,该突变体叶片中叶绿素a、叶绿素b和类胡萝卜素含量均显著下降。SLTW突变体与野生型的转录组比较分析表明,差异表达基因显著富集到类胡萝卜素合成、四吡咯结合、血红素结合、铁结合、氧化还原过程、光合作用等通路上。叶绿素合成基因(ID号为HORVU.MOREX.r2.2HG0174230)和类胡萝卜素代谢基因(ID号为HORVU.MOREX.r2.5HG0354290)在SLTW突变体与野生型中的表达量均差异显著,且均检测到SNP突变,推测这些基因可能与大麦阶段性白化有关。编码光合作用-天线蛋白、细胞色素P450、跨膜转运(ABC转运)蛋白及转录因子也可能是调控大麦阶段性白化的潜在候选基因。  相似文献   

7.
【目的】斑马叶突变体作为水稻叶色突变体的重要种质资源,是研究植物光合作用机制和高光效育种的理想材料,对于解析光合作用机理和提高水稻产量具有重要意义。【方法】用甲基磺酸乙酯(EMS)诱变粳稻品种春江06建立突变体库,从突变体库中筛选到1份苗期为斑马叶的突变体,该突变体被命名为zl7(zebra leaf7)。在常规大田种植条件下分别比较突变体与野生型在苗期、抽穗期和成熟期叶色表型和产量性状差异,通过透射电镜实验分析叶片叶绿体发育情况,利用图位克隆方法克隆候选基因,利用荧光定量PCR方法分析参与叶绿素合成和叶绿体发育相关基因的表达水平。【结果】从苗期开始,突变体zl7表现出典型的斑马叶,叶绿素含量降低,直到抽穗期,斑马叶表型消失,叶片逐渐复绿,叶绿素含量无明显差异。光合速率测定和电镜观察结果显示,突变体zl7的光合速率、气孔导度下降,叶绿体发育异常。与野生型相比,突变体的株高、分蘖、穗长、一次枝梗、二次枝梗和每穗粒数均显著降低,而粒长、粒宽和千粒重均略有增加。荧光定量PCR结果表明突变体中参与叶绿素降解相关基因的表达量显著升高,而参与叶绿素合成和叶绿体发育相关基因的表达量显著降低。遗传分析...  相似文献   

8.
水稻白化致死突变体abl4的鉴定和基因定位   总被引:1,自引:0,他引:1  
 从60Co诱变的粳稻中花11 M2代中发现了一个白化致死突变体,该突变体从发芽后至3叶期一直表现白化,3叶后逐渐死亡,根据随后的基因定位研究结果,将该白化突变体暂定名为albino lethal 4 (abl4)。与野生型相比,abl4突变体的叶绿素含量与类胡萝卜素含量极低,几乎难以检测到。叶绿素荧光分析结果表明,abl4叶片中的电子传递速率和实际光化学效率都为0,而最大光化学效率也极低,显示突变体没有光化学活性。abl4突变体中包括过氧化物酶、超氧化物歧化酶在内的抗氧化酶活性显著升高,过氧化氢酶(CAT)活性显著下降,脂质过氧化产物丙二醛含量显著提高,提示abl4突变体受到氧化胁迫。电子显微镜观察表明abl4不能形成完整的叶绿体,只有类似前质体结构。遗传分析表明,该突变表型受一对隐性核基因控制。利用abl4突变体与籼稻品种龙特甫B杂交获得的F2分离群体进行基因定位,首先将该基因定位于水稻第4条染色体上的SSR标记RM3785和RM303之间。随后,利用新开发的STS和dCAPS标记,进一步将ABL4 基因定位在RH46 31和RH46 33之间,物理距离约为201 kb。   相似文献   

9.
【目的】本研究旨在鉴定和克隆水稻温敏转绿新基因,揭示其参与叶绿体发生发育和光合作用的分子机制,为高光效育种提供理论支撑。【方法】利用辐射诱变的方法,从粳稻品种日本晴中筛选获得叶片黄化突变体osv15,并对其表型、农艺性状和遗传方式进行详细分析。构建了突变体与Kasalath的F2群体,利用多态性分子标记对目的基因进行定位和测序分析。【结果】osv15幼苗期在22℃低温下叶片黄化,叶绿素含量仅为野生型的10%,光化学效率下降,叶绿体结构异常;随着温度的升高,osv15的叶色由黄转绿,30℃时叶绿素含量恢复到野生型的68%,光化学效率和叶绿体发育与野生型相近。在自然环境下,osv15突变体从苗期至成熟期均表现为叶片黄化,且株高、分蘖数和产量等农艺性状与野生型相比差异显著。遗传分析表明osv15突变体的表型由一对隐性核基因控制。将OsV15基因定位到第6染色体多态性标记S4和S5之间84 kb的区间内,定位区间测序发现突变体中编码分子伴侣蛋白的基因Cpn60β1(LOC_Os06g02380)发生单碱基缺失。【结论】osv15是一个新的水稻温敏转绿突变体,Cpn60β1可能为突变基因。  相似文献   

10.
从粳稻品种日本晴经60Co诱变的M1代材料中发现了一个白化致死突变体,该突变体从萌芽后一直表现白化,3叶期后逐渐衰亡。遗传分析表明,该突变表型受一对隐性核基因控制,将该白化突变体暂定名为 al14。与野生型相比, al14突变体的叶绿素含量与类胡萝卜素含量显著降低。电子显微镜观察表明 al14突变体不能形成完整的叶绿体,只有原片层体结构。对叶绿体编码基因的表达分析发现,突变体中光系统Ⅰ和光系统Ⅱ基因表达明显下调,核糖体结构基因和质体编码的RNA聚合酶亚基基因表达明显上调,但是PsbN(photosystem Ⅱ protein N)却上调表达水平最高,达到118.23倍。利用 al14 突变体与黄华占杂交获得的F2代分离群体进行基因定位,将该基因定位于水稻第6染色体上约40 kb的范围。目前,该范围内没有叶色相关基因的报道,可能为一新的调控叶绿体发育的基因。  相似文献   

11.
从EMS诱变的籼稻品种Kasalath突变体库中筛选获得了一个短根毛突变体,命名为ksrh1。该突变体在苗期表现为根毛变短,除此之外其表型与野生型没有显著差异。遗传分析表明,该突变性状受1个隐性单基因控制。将突变体ksrh1与粳稻品种日本晴杂交构建F2定位群体,利用已公布的水稻SSR标记和自行设计的STS标记对突变位点进行基因定位,最终将KSRH1定位在水稻第1染色体长臂上的S3578和S3584之间,物理距离约为67kb。  相似文献   

12.
通过中子辐射诱变早籼稻品种红矮B,获得矮秆多分蘖突变体bf370。该突变体与野生型相比表现为植株矮化,分蘖极多。bf370在全生育期内的分蘖数达200个左右,是野生型分蘖数量的14倍以上。遗传分析表明该矮秆多分蘖突变体表型受一对隐性核基因控制。利用突变体bf370与日本晴杂交构建的F2群体将突变基因定位到第1染色体长臂Indel 4与Indel 10之间398kb区域内。测序分析发现,与野生型相比突变体该区段内的D10基因在第2外显子上缺失66bp碱基,导致D10蛋白RPE65结构域22个氨基酸缺失。结合D10其他突变体表型推断,bf370表型极有可能由D10突变所致。  相似文献   

13.
在水稻品种南粳41中发现了一个黄绿叶自然突变体,经过多代连续自交形成了稳定的突变系,命名为ygl11(t),ygl11(t)整个生育期叶片都表现为黄绿色。对苗期、分蘖盛期、齐穗期突变体和野生型的叶绿素含量进行测定,ygl11(t)的叶绿素含量是野生型的45.7%~74.7%,叶绿素a含量是野生型的55.2%~87.5%,叶绿素b含量是野生型的12.5%~25.3%,ygl11(t)的类胡萝卜素的含量是野生型的62.3%~97.0%。ygl11(t)在分蘖盛期的净光合速率显著高于野生型,花后10d,ygl11(t)的净光合速率比野生型略低。对突变体叶片中叶绿体的超微结构进行观察,发现突变体叶绿体内的类囊体基粒片层数目减少且严重扭曲变形。遗传分析表明,ygl11(t)叶色性状受1对隐性核基因控制。利用SSR分子标记将YGL11(t)初步定位在水稻第10染色体的长臂上,进一步利用新开发的InDel和CAPS标记将YGL11(t)定位在58.1kb的物理距离内。对该区段内存在的开放阅读框进行序列分析,发现突变体ygl11(t)中编码叶绿素a氧化酶(chlorophyll a oxygenase 1)基因(OsCAO 1)的第9个外显子存在2个碱基缺失,从而导致提前出现终止密码子,初步分析OsCAO1即为YGL11(t)的候选基因。  相似文献   

14.
【目的】叶片是水稻进行光合作用最重要的器官。叶色突变体是研究光合作用、叶绿素合成代谢和叶绿体发育的重要材料。【方法】利用60Co辐射诱变中籼恢复系自选1号,获得黄叶早衰突变体osyes1。幼苗期对突变体和野生型进行外源H2O2处理。抽穗期对突变体和野生型叶片进行超氧化物歧化酶活性、过氧化氢酶活性、活性氧含量、丙二醛含量、可溶性蛋白含量、叶绿素含量、净光合速率测定以及透射电镜观察。成熟期考查突变体和野生型的主要农艺性状。以osyes1/02428的F2群体中的隐性单株为作图群体,利用图位克隆方法定位OsYES1基因。【结果】osyes1的突变性状始于3~4叶期,水稻抽穗后,所有叶片均表现为黄叶衰老症状,致使突变体株高、穗长、每穗粒数及结实率极显著低于野生型对照。与野生型对照相比,突变体幼苗对外源H2O2更敏感。生理分析表明,孕穗期野生型倒3叶的叶绿素含量、过氧化物酶和过氧化氢酶活性极显著低于倒2叶和剑叶,而突变体的含量则极显著低于野生型且依次极显著降低;与野生型相比,突变体剑叶、倒2叶和倒3叶的丙二醛、H2O2和O2-含量极显著增加,而可溶性蛋白含量则相反。遗传分析表明,osyes1受一对隐性核基因控制,利用图位克隆技术将OsYES1基因定位于第7染色体短臂的RM21353与RM21384之间,物理距离为708 kb。【结论】由于osyes1叶片过早黄化衰老导致与产量相关的重要农艺性状显著下降。OsYES1基因定位在第7染色体两个SSR标记(RM21353和RM21384)之间的708 kb的物理区间内。  相似文献   

15.
从正常绿色水稻品种824B中发现1个黄化突变体824ys。该突变体具有叶绿素缺失突变特性,表现为植株黄绿色,分蘖数减少,生育期延长,总叶绿素、叶绿素a、叶绿素b的含量以及净光合速率比野生型亲本824B明显下降,每穗着粒数、结实率、千粒重等降低。对824ys与3个正常绿色品种杂交F1、F2的遗传分析表明,控制824ys的叶绿素缺失突变性状为1对隐性核基因。以495R/824ys F2作为定位群体,应用微卫星标记将824ys的叶绿素缺失突变基因定位于水稻第3染色体短臂,与RM218、RM282和RM6959等标记之间的遗传距离分别为25.6、 5.2和21.8 cM。认为该基因为一个新的水稻叶绿素缺失突变基因,暂命名为chl11(t)。  相似文献   

16.
以水稻白化转绿型叶色突变体及其野生型亲本为材料,研究突变体转绿过程中叶片相关生理特性及其叶绿体发育超微结构变化.研究结果表明:突变体随着叶色转绿,叶片叶绿素、可溶性蛋白含量增加、超氧化物歧化酶(SOD)活性降低,突变体叶色在完全转绿后,SOD活性电泳中出现了清晰的Fe-SOD谱带;突变体在2叶1心期,叶肉细胞内都是囊状空泡,没有叶绿体,而野生型亲本叶肉细胞内已具有大量叶绿体存在;突变体6叶1心期,叶肉内可以观察到叶绿体的存在,但叶绿体形态不规则或畸形;野生型亲本叶绿体可以直接由前质体正常发育而来,而突变体的叶绿体发育经历了“前质体-白色体-叶绿体”的过程,其叶绿体发育明显滞后.  相似文献   

17.
 从粳稻品种Asominori组培后代中获得一个稳定遗传的黄绿相间叶色突变体(zebra leaf 2, zl2)。该突变体在苗期表现为黄绿相间的斑马状,分蘖后期斑马叶性状逐渐减弱,到抽穗期叶片逐渐变为淡黄色。与野生型相比,zl2 在3叶期、分蘖盛期、抽穗期及成熟期叶片的叶绿素、类胡萝卜素含量显著降低,成熟后其结实率、千粒重、株高也显著下降。电镜观察结果显示,苗期zl2叶片黄色部分叶肉细胞中叶绿体显微结构发生了明显的异常,而绿色部分与野生型基本一致。遗传分析结果表明,zl2突变性状受一对隐性核基因控制。从zl2与籼稻品种南京11衍生的F2群体中挑选1607株表现为突变性状的分离单株,最终将该突变基因定位于第11染色体约164.3 kb的区域内。基因预测表明该区域内存在13个ORFs,其中ORF12编码一个类胡萝卜素异构酶,序列分析表明突变体中的该基因第10个内含子与第11外显子的交界处碱基A突变为T,导致cDNA发生错误剪切,缺失4个碱基,产生移码突变,并于第395个氨基酸处提前终止。RT PCR分析表明,相对野生型在突变体中ZL2的表达量显著下降,同时叶色相关基因PORA、RbcL、RbcS、 Cab1、Cab2、 psaA、psbA、OsDVR表达量也显著下降,而HEMA1、YGL1、V1、V2、SPP、OsPPR的表达量显著上升。结果表明ZL2在水稻叶绿素合成及叶绿体发育中起着重要作用。  相似文献   

18.
叶色突变体既可用于作物叶绿素合成、降解和光合作用等研究,也可作为标记基因为作物育种利用。本文对一个新发现的大豆黄绿叶自发突变体NJ9903-5进行遗传鉴定。结果表明:从对生真叶开始,该突变体幼嫩叶呈黄色,随着生长叶片逐渐转变为绿色。黄化叶片叶绿体数目下降,基质片层减少且排列疏松,叶绿素a、b、类胡萝卜素含量都极显著下降;其对株高、主茎节数、单株粒数、单株荚数有负效应,但对百粒重、蛋白质含量、油脂含量影响小,杂交后代中上述性状变异大。3个杂交群体遗传分析表明该性状受一对隐性核基因控制,利用F2隐性个体将目标基因ygl定位在SSR标记BARCSOYSSR_02_1445和BARCSOYSSR_02_1477之间约366 kb区段,包含36个候选基因。测序分析发现在突变体中,叶绿体膜转运蛋白相关基因Glyma.02G233700第1个外显子第38个碱基G缺失,移码突变导致蛋白翻译提前终止,结合前人研究结果,推测其为黄绿叶的目的基因ygl。  相似文献   

19.
【目的】水稻色素不仅对其自身生长发育有重要生理作用,而且在水稻育种、农副产品改良等方面运用比较广泛。对水稻色素相关基因进行表型分析和基因定位,为进一步研究色素代谢途径及调控机理奠定基础。【方法】利用EMS诱变粳稻长粒粳(CLJ),在突变体库内筛选到一个金黄色颖壳与节间突变体gh881;在成熟期,测定野生型与gh881的主要农艺性状;将gh881与野生型及中恢8015杂交,观察BC1F1及F1植株表型,并对BC1F2及F2表型分离进行卡方检验,对gh881进行遗传分析;利用F2群体和图位克隆的方法对gh881突变基因进行定位;采用q PCR检测颖壳颜色相关基因在gh881与野生型不同发育时期的幼穗、节间以及剑叶叶鞘的相对表达量。【结果】与野生型相比,突变体的颖壳与节间均呈金黄色;除单株有效穗数外,gh881突变体的株高、每穗总粒数及实粒数、结实率和千粒重等性状均极显著降低。遗传分析和基因定位结果表明,gh881的突变表型受1对隐性核基因控制,位于第2染色体短臂,并最终将该基因精细定位于标记FH-13和RH-25之间,物理距离约33.2 kb,该区域中包含4个开放阅读框(ORFs)。【结论】序列分析结果表明,发现其中一个编码肉桂醇脱氢酶(CAD)的基因OsC AD2(Os02g0187800)的3 563 bp处发生了1个单碱基突变(G转换为A),导致该基因编码区的第297位氨基酸由甘氨酸突变为天冬氨酸,由此认为该突变体为OsC AD2基因单碱基突变的新等位基因。q RT-PCR结果表明,突变体的节间中OsCAD2相对表达量极显著下调,而在剑叶叶鞘及穗部则基本都是极显著增加,其他相关基因也发生显著变化,证实OsCAD2是木质素代谢中的重要基因,且可能与其他相关基因存在反馈调节。  相似文献   

20.
一个水稻黄绿叶突变体ygl10的遗传分析和基因定位   总被引:2,自引:1,他引:1  
以籼稻93-11为背景的水稻突变体中发现一个黄绿叶突变体(yellow-green leaf,ygl10)。形态分析表明,与野生型93-11相比,ygl10突变体株高、穗长降低,结实率下降。叶绿素含量测定表明,ygl10突变体中叶绿素a、叶绿素b和类胡萝卜素含量均极显著降低,其中叶绿素b降幅最大,只有野生型的2%。叶绿体超微结构观察表明,突变体中类囊体和基粒片层数量明显减少。遗传分析结果表明,该黄绿叶突变体由一隐性核基因控制。进一步利用分子标记将ygl10定位在水稻第10染色体约380kb的区段内。对该区段内存在的ORF进行序列分析,发现编码叶绿素a氧化酶(chlorophyll a oxygenase)基因(OsCAO1)的第9个外显子存在5个碱基缺失,从而导致提前出现终止密码子,推测CAO1即为ygl10的候选基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号