首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
试验从萌发的花魔芋实生种子中筛选出一株产β-甘露聚糖酶的内生菌,对该菌株进行鉴定并研究所产β-甘露聚糖酶的酶学性质。采用透明圈法初筛,DNS法测酶活力,摇瓶发酵复筛获得产酶最高的菌株,利用16SrDNA序列分析对该菌株进行鉴定并对所产酶的基本酶学性质进行研究。结果显示,该高产β-甘露聚糖酶的内生菌株与路德维希肠杆菌(Enterobacter ludwigii)同源性达99%。所产β-甘露聚糖酶的最适温度为60℃,在30~50℃条件下较稳定;最适pH为6.0,在pH 4.0~9.0的条件下较稳定;Zn~(2+)(117.84%)、EDTA(115.80%)、Cu~(2+)(113.76%)对β-甘露聚糖酶有较强的激活作用,Mn~(2+)(22.02%)对其有强烈的抑制作用;以魔芋粉为底物时,Km值为26.65mg/mL。该菌摇瓶发酵72h后,β-甘露聚糖酶酶活力达9.48U/mL,具有良好的酶学性质,在动物饲料工业中具有广阔的应用前景。  相似文献   

2.
以自筛选得到的1株黑曲霉为试验菌株,经固态发酵获得了较高活性的酸性β-甘露聚糖酶。以此酶粉为样本,在相应的pH条件下测定分析其他酶系的活力表现。测定此酸性β-甘露聚糖酶的最适反应pH及最适反应温度,并对其酸稳定性及对胃蛋白酶和胰酶的抗降解作用也进行了特定分析。结果发现,该酶系中除了含有高活性的酸性β-甘露聚糖酶,还含有酸性蛋白酶、木聚糖酶和羧甲基纤维素酶(CMCase)等多种酶活。在pH 2~6,此酸性β-甘露聚糖酶表现出很好的活力,最适酶促反应pH约在3.5;在酸性缓冲液(pH 2.8)中40℃保温8 h,酸性β-甘露聚糖酶的酶活几乎没有损失。在胃蛋白酶环境中(pH 2.8)40℃保温5 h,此酸性甘露聚糖酶表现出非常好的抗降解能力,在胰酶环境中(pH 7.5)40℃保温5 h,酶活力损失不超过20%,在实际生产中具有很广的应用前景。  相似文献   

3.
黑曲霉AS6034酸性β-甘露聚糖酶的性质研究   总被引:2,自引:0,他引:2  
对黑曲霉AS6034菌株所产酸性β-甘露聚糖酶的重要酶学性质进行了研究,该酶最适pH为3.2、在pH3.8左右保存2h稳定性较好,最适温度为45℃,在50℃和60℃恒温水浴中存放160min后,酶活力无明显变化,最适底物浓度为1.0%,并对该粗酶液反应动力学进行了研究,得到了以角豆胶为底物的动力学参数V_m为2.85μmol/(g·min)、Km为2.21mg/mL。  相似文献   

4.
试验从萌发的花魔芋实生种子中筛选出一株产β-甘露聚糖酶的内生菌,对该菌株进行鉴定并研究所产β-甘露聚糖酶的酶学性质。采用透明圈法初筛,DNS法测酶活力,摇瓶发酵复筛获得产酶最高的菌株,利用16S rDNA序列分析对该菌株进行鉴定并对所产酶的基本酶学性质进行研究。结果显示,该高产β-甘露聚糖酶的内生菌株与路德维希肠杆菌(Enterobacter ludwigii)同源性达99%。所产β-甘露聚糖酶的最适温度为60℃,在30~50℃条件下较稳定;最适pH为6.0,在pH 4.0~9.0的条件下较稳定;Zn2+(117.84%)、EDTA(115.80%)、Cu2+(113.76%)对β-甘露聚糖酶有较强的激活作用,Mn2+(22.02%)对其有强烈的抑制作用;以魔芋粉为底物时,Km值为26.65 mg/mL。该菌摇瓶发酵72 h后,β-甘露聚糖酶酶活力达9.48 U/mL,具有良好的酶学性质,在动物饲料工业中具有广阔的应用前景。  相似文献   

5.
黑曲霉MA-56 β-甘露聚糖酶的生产条件研究   总被引:2,自引:1,他引:1  
本文通过Plackect-Burman设计及单因素试验,研究了影响黑曲霉菌株MA-56生产β-甘露聚糖酶的主要因子,并优化了影响β-甘露聚糖酶固体生产的因素.结果表明,硫酸亚铁、牛肉膏、磷酸二氢钾和玉米浆粉4个因素对β-甘露聚糖酶生产影响显著,可信度大于90%.但均为产酶负影响因子;尿素、氯化钙和硫酸镁为产酶的正影响因子,但影响不显著.单因子试验表明,黑曲霉菌株MA-56产β-甘露聚糖酶的最适培养基条件为:麸皮8 g,豆粕2 g,魔芋粉0.1 g(以10 g干基为标准).当固形物与加水比10:9,接种孢子悬浮液2.5mL(以一支菌种斜面加30 mL无菌水为标准),300 mL三角瓶中装量7 g培养基,发酵56 h时,产酶量达到2.01×105U/g.  相似文献   

6.
采用筛选培养基透明圈法从土壤中筛选到1株高效分泌β-甘露聚糖酶的细菌,经形态和生理生物化学鉴定,确定为枯草芽孢杆菌.试验对该菌株的液体摇瓶产酶发酵条件进行单因素的优化,优化后的产酶发酵条件:碳源为2.5%魔芋精粉,氮源为0.5%硝酸钠,在250 mL三角瓶中装料量为30 mL,起始pH为7.3 ~7.5,接入1 mL种龄为20 h的种子液,190 r/min,35℃下培养48 h.在此条件下,β-甘露聚糖酶酶活可达375 U/mL.  相似文献   

7.
克隆表达副猪嗜血杆菌β-半乳糖苷酶(BgaC),并测定其酶学特性。以副猪嗜血杆菌SH0165菌株基因组为模板,将BgaC基因的序列(1 791bp)克隆到pET32a质粒上,并电转化BL21表达菌株。以His标签融合蛋白纯化操作方法纯化表达产物。用聚丙烯酰胺凝胶电泳测定β-半乳糖苷酶的天然分子质量,以邻硝基苯β-D-半乳吡喃糖苷为底物测定其酶学特性。结果表明,在大肠埃希菌BL21中成功表达了副猪嗜血杆菌的BgaC基因,经鉴定pET32a+BgaC重组菌表达的蛋白大小为82.4ku。纯化后BgaC的酶比活力为1 795U/mg,pET32a+BgaC重组蛋白的最适pH为6~7,最适温度为30℃~37℃。副猪嗜血杆菌β-半乳糖苷酶(BgaC)具有糖苷酶活性能够介导糖蛋白的降解,在氨基酸序列上存在高度保守的区域,在生物技术领域具有广泛的应用前景。  相似文献   

8.
本试验旨在构建不同纤维素酶的融合表达系统及探讨融合纤维素酶的酶学性质。利用PCR技术从实验室前期分离的枯草芽孢杆菌中分别扩增2个纤维素酶基因Cel42和Cel22,设计一段柔性接头(GSGGGS),通过酶切连接将2个纤维素酶基因构建在一个开放阅读框(ORF)内,插入到pET32a(+)中构建重组表达载体pET32a(+)-Cel42-Cel22,转化大肠杆菌BL21(DE3)进行诱导表达,并对其酶学性质进行研究。结果表明:本试验成功克隆了2个纤维素酶基因Cel42和Cel22,并构建了重组表达系统BL21(DE3)/pET32a(+)-Cel42-Cel22,十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)估计其分子质量约为101 ku,粗酶液中葡聚糖内切酶活性为57.62 U/mL,葡聚糖外切酶活性为32.57 U/mL。试验所得融合纤维素酶Cel42-Cel22的最适反应温度为50℃,最适反应pH为6.0,温度在30~70℃范围内时可维持70%以上的纤维素酶活性,pH在4.0~9.0范围内时可保持75%以上的纤维素酶活性,除Mn~(2+)外的其他金属离子对纤维素酶的活性均具有一定的抑制作用,其中Hg~(2+)和Cu~(2+)对的抑制作用较明显。由此可见,本试验在大肠杆菌BL21(DE3)中成功表达出了融合纤维素酶Cel42-Cel22,且该酶具有一定的活性,可适应较宽广的温度和pH范围,对金属离子敏感。  相似文献   

9.
试验初步研究了一株黑曲霉菌种所产酸性β-甘露聚糖酶的酶学特性,主要是这种酸性β-甘露聚糖酶受到温度、pH值等因素影响时的酶活性变化,并对这种酸性β-甘露聚糖酶降解大豆皮的能力和在石油开采(酸性β-甘露聚糖酶水解瓜儿豆胶的能力)中的应用做了实验。结果表明,这种酸性β-甘露聚糖酶在较大范围的温度条件下酶活性稳定,能够耐受较宽的pH值环境,并且对大豆皮的降解作用明显优于对照样品,这种酸性β-甘露聚糖酶在石油开采中的破胶效果非常好,能够耐受极端的地质条件,与国外产品对比具有很高的性价比,为酸性β-甘露聚糖酶在更宽领域的应用提供指导。  相似文献   

10.
研究旨在高产β-甘露聚糖酶饲用益生芽孢杆菌的筛选及培养条件优化。用透明圈法筛选得到一株产β-甘露聚糖酶活力较高的枯草芽孢杆菌(Bacillus subtilis)WMYB-2,通过单因素实验、Box-Behnken实验及响应面分析对该菌的产酶培养基及培养条件进行了优化,并对其酶学性质进行了初步研究。结果表明,该菌株产酶的最佳培养基及发酵条件为:魔芋微粉10.0 g/l,大豆蛋白胨10.0 g/l、CaCl_2 0.6 g/l、K_2HPO_4 0.8 g/l、MgSO_4·7H_2O 1.0 g/l,pH三角瓶,37℃、220 r/min发酵36 h,酶活力达355.75 U/ml,是初始酶活力的3.5倍。该酶的最适反应温度和pH值分别为55℃和5.5。在45~55℃内酶活力稳定,55℃保温30 min和3 h后其相对酶活力保留92%和57%;在pH值5.0~10.0内酶活力稳定,在pH值9.0和10.0的环境下处理2 h其相对酶活力保留95%和81%。Li~+和K~+对该酶具有一定的激活作用。该酶具有良好的耐碱特性及应用潜力。  相似文献   

11.
植酸酶和嗜酸乳杆菌是重要的饲料添加剂,为获得产植酸酶的嗜酸乳杆菌菌株,克隆了大肠杆菌植酸酶基因,构建表达载体并转化嗜酸乳杆菌,对重组嗜酸乳杆菌进行发酵产酶并测定所产酶液的酶学性质,进一步研究重组嗜酸乳杆菌的耐酸性及植酸酶液的抗蛋白酶活性。结果表明:重组嗜酸乳杆菌发酵24 h植酸酶活性为984 U/mL,植酸酶的最适催化pH为4.5,最适催化温度为60℃。重组嗜酸乳杆菌在pH 2.0~4.5有一定的耐酸性,在pH 2.0条件下2 h的存活率为76.4%。植酸酶液用胃蛋白酶处理160 min后植酸酶液剩余85%的相对酶活,用胰蛋白酶处理160 min后剩余29%的相对酶活。上述研究结果为重组嗜酸乳杆菌后续应用研究提供了重要依据。  相似文献   

12.
试验旨在探讨酸性与中性β-甘露聚糖酶组合效果及其不同添加量对断奶仔猪生长性能及血清生化指标的影响,为复合型β-甘露聚糖酶的开发提供依据。试验一体外仿生消化试验采用单因素试验设计,分为6个组别,对照组为不加酶组,5个加酶组β-甘露聚糖酶添加量均为4 U/g基础日粮,酸性与中性β-甘露聚糖酶活力比分别为0100、2575、5050、7525、1000,以对基础日粮还原糖释放量为依据选择最佳的复合型β-甘露聚糖酶;试验二选择8 kg左右杜长大杂种断奶仔猪300头,根据体外仿生消化试验结果,采用单因素完全随机设计,分为4组,每组5个重复,每个重复15头猪。对照组饲喂基础日粮,3个试验组在基础日粮中分别添加复合型β-甘露聚糖酶2 000、4 000、6 000 U/kg,正式试验期28 d。结果表明:在仿生消化试验中,酸性与中性β-甘露聚糖酶酶活比为5050时,对日粮还原糖释放量的提高最为明显,达7.64%;在断奶仔猪生产试验中,添加4 000、6 000 U/kg复合型β-甘露聚糖酶能显著提高断奶仔猪末重、日均采食量、日增重(P0.05),同时三种剂量添加均能显著降低仔猪腹泻率(P0.05);添加4 000、6 000 U/kg复合型甘露聚糖酶可显著提高血清中血糖和总蛋白含量(P0.05)。综合各项指标,酸性与中性β-甘露聚糖酶酶活比以5050进行添加,且在日粮中的添加量为4 000~6 000 U/kg时,能显著改善断奶仔猪的生长性能,降低仔猪腹泻率,提高血清中血糖和总蛋白含量。  相似文献   

13.
该研究旨在建立一种检测转β-甘露聚糖酶基因大肠杆菌表达产物的有效方法。由于表达量有限及产物结构的变化,常规的检测方法不能准确地判断表达产物的性质,因此,该研究运用自制的抗原和抗血清建立酶联免疫法来进行检测。检测结果表明,转β-甘露聚糖酶基因大肠杆菌成功地表达了β-甘露聚糖酶。  相似文献   

14.
棕榈粕是一种优质饲粮,但棕榈粕中抗营养因子甘露聚糖含量高。β-甘露聚糖酶可降解甘露聚糖,改善饲料营养价值。真菌是甘露聚糖酶的主要来源之一,但目前所查阅的文献中,未见枝孢菌来源甘露聚糖酶的报导。芽枝状枝孢菌SD01可在棕榈粕为唯一碳源的培养基中生长,并在发酵上清液中检测到甘露聚糖酶活性。本试验旨在用棕榈粕作为唯一碳源的培养基发酵芽枝状枝孢菌(Cladosporium velox)SD01生产甘露聚糖酶,并对其酶学性质、底物特异性和降解产物进行研究。结果表明:芽枝状枝孢菌SD01来源甘露聚糖酶最适pH 4.5;最适温度75℃;在pH 4.0~6.0及50℃以下条件稳定;对侧链分支频率低的甘露聚糖的降解活性较高。本研究制得了枝孢菌属来源的甘露聚糖酶,并对其相关酶学性质进行研究。  相似文献   

15.
利用甲醇营养型毕赤酵母对柞蚕溶菌酶进行高效重组表达。首先根据毕赤酵母密码子偏爱性对柞蚕溶菌酶成熟肽基因进行密码子优化,将优化后的基因序列ApLyz克隆至毕赤酵母分泌型表达载体pPICZαA中,构建重组表达载体pPICZαA-ApLyz。重组载体经电转化整合入毕赤酵母菌株GS115基因组中,并利用高质量浓度Zeocin(500μg/mL)抗性平板筛选得到高拷贝转化子。摇瓶发酵显示,甲醇诱导72 h后,高拷贝菌株发酵液中溶菌酶活性为450 U/mL(313 U/mg总蛋白),酶活约为单拷贝菌株的3.1倍。纯化后的重组柞蚕溶菌酶分子质量约14 kDa,酶活为3 870 U/mL,比酶活为20 262 U/mg。酶学性质分析显示,重组柞蚕溶菌酶的最适反应温度为40℃,最适反应pH为4.5,具有较好的热稳定性。  相似文献   

16.
黑曲霉变种(A.niger v.Tiegh)CGMCC1182、黑曲霉MA-56(A.niger MA-56)CGMCC2722和黑曲霉XY-1(A.niger XY-1)CGMCC1182分别为α-半乳糖苷酶、β-甘露聚糖酶和木聚糖酶生产菌株。为获得高产α-半乳糖苷酶、β-甘露聚糖酶和木聚糖酶的复合酶制剂,通过单因素实验,研究了黑曲霉三种菌株在固态发酵条件下产复合酶制剂的培养基组成和培养条件。结果表明,黑曲霉混菌发酵生产复合酶的最适培养基组成为:麸皮∶豆粕为7∶3(m/m),在此基础上(以麸皮和豆粕总量为10 g计算)添加玉米芯1.0 g,魔芋粉0.1 g,葡萄糖0.5 g,(NH4)2SO4 0.2 g,NaNO3 0.1 g,MgSO4 0.1 g,KH2PO4 0.2 g,H2O 11 mL。产酶最适培养条件为:培养温度30℃,固形物与加水比1∶1,α-半乳糖苷酶、β-甘露聚糖酶和木聚糖酶接种比例为5∶6∶6,接种混合孢子悬浮液2.5 mL(以一支菌种斜面加30 mL无菌水为标准),300 mL三角瓶中装量8 g培养基,发酵60 h时,复合酶产量达到最优,α-半乳糖苷酶、β-甘露聚糖酶和木聚糖酶三种酶制剂的活力分别可以达到221、894、10188 IU/g。  相似文献   

17.
甘露聚糖酶是战略性新兴产业重点研发产品之一。微生物是工业生产应用甘露聚糖酶的主要来源。树叶覆盖的腐殖土壤蕴含丰富的微生物资源。研究从腐殖污泥中分离得到一株真菌,经过ITS序列分子鉴定分析,该菌株SD02属于枝孢菌属。枝孢菌属专性营养型或半腐生型的生活方式决定其具有木质纤维素降解的能力,而关于枝孢菌来源的甘露聚糖酶的报道极少。试验对液体发酵枝孢菌SD02分泌胞外甘露聚糖酶及其粗酶液的酶学性质进行研究。结果表明:其最适温度为50℃;最适pH值为5.5和10.0,并且在2个最适pH值之间均能维持较高的酶活力;同时,具有较宽的pH稳定范围。枝孢菌SD02发酵上清液中含有甘露聚糖酶、葡聚糖酶和α-半乳糖苷酶。但是,枝孢菌SD02来源的葡聚糖酶和α-半乳糖苷酶不能有效地协助甘露聚糖酶降解甘露聚糖。枝孢菌来源的甘露聚糖酶具有较宽的pH值活性范围和稳定性,该酶在饲料、食品和造纸等领域具有应用潜力。  相似文献   

18.
为获得产β-甘露聚糖酶发酵最佳条件,本研究以克隆筛选获得的产耐高温β-甘露聚糖酶的毕赤酵母菌M27-8菌株为研究对象,对不同氮源含量、葡萄糖含量、p H、发酵时间、接种量、温度和转速进行优化。结果表明:最佳产酶条件为6%玉米浆、3%葡萄糖、p H 5.5、发酵60 h、2%接种量、28℃、225 r/min,最大酶活达到452.7 U/m L,是优化前酶活138 U/m L的3.3倍。综上,此发酵培养基可用较廉价的玉米浆取代YPD培养基,从而节省成本,为工业生产奠定基础。  相似文献   

19.
本试验旨在探究响应面法优化筛选6种非淀粉多糖酶(木聚糖酶、β-葡聚糖酶、纤维素酶、β-甘露聚糖酶、α-半乳糖苷酶、果胶酶)添加于肉鸡玉米-豆粕-杂粕型饲粮中最优组合酶谱。采用第3代单胃动物仿生消化系统(SDS-Ⅲ)进行模拟胃肠液体外消化试验,首先采用单因素完全随机试验设计,在肉鸡玉米-豆粕-杂粕型基础饲粮中分别添加5个水平的6种非淀粉多糖酶,每个水平设5个重复,以还原糖释放量(RS)和干物质消化率提高值(IDMD)为评价指标,确定单酶的最佳添加量;据此结果,进一步利用软件Design-Expert 8.06 Box-Behnken响应面法设计6因子3水平L_(54)(3~6)试验,对6种单酶进行复配组合,以RS和IDMD为响应值,确定6种单酶的最佳组合酶谱。结果表明:在1~3周龄肉鸡玉米-豆粕-杂粕型饲粮中优选出的6种非淀粉多糖酶酶谱为木聚糖酶11.40 U/g、β-葡聚糖酶3.76 U/g、纤维素酶8.52 U/g、β-甘露聚糖酶8.19 U/g、α-半乳糖苷酶6.24 U/g、果胶酶1.60 U/g,该酶谱催化反应的RS和IDMD分别为9.71 mg/g和2.86%;在此条件下进行3次重复试验,得到RS和IDMD分别为9.59 mg/g和2.81%,与理论最优值的误差分别为1.24%和1.75%,表明所得酶谱能反映出对RS和IDMD的较好结果。在4~6周龄肉鸡玉米-豆粕-杂粕型饲粮中优选出的6种非淀粉多糖酶酶谱为木聚糖酶11.90 U/g、β-葡聚糖酶5.26 U/g、纤维素酶8.32 U/g、β-甘露聚糖酶7.96 U/g、α-半乳糖苷酶6.29 U/g、果胶酶6.17 U/g,该酶谱催化反应的RS和IDMD分别为10.45 mg/g和2.95%;在此条件下进行3次重复试验,得到RS和IDMD分别为10.34 mg/g和2.92%,与理论最优值的误差分别为1.05%和1.02%,表明所得酶谱能反映出对RS和IDMD的较好结果。综上所述,1~3周龄肉鸡饲粮6种非淀粉多糖酶最佳酶谱是木聚糖酶11.40 U/g、β-葡聚糖酶3.76 U/g、纤维素酶8.52 U/g、β-甘露聚糖酶8.19 U/g、α-半乳糖苷酶6.24 U/g、果胶酶1.60 U/g;4~6周龄肉鸡饲粮6种非淀粉多糖酶最佳酶谱是木聚糖酶11.90 U/g、β-葡聚糖酶5.26 U/g、纤维素酶8.32 U/g、β-甘露聚糖酶7.96 U/g、α-半乳糖苷酶6.29 U/g、果胶酶6.17 U/g。  相似文献   

20.
该文分析了硫色曲霉固态发酵获得的复合酶在不同pH值条件下,各组分酶活的表现活力、耐生长猪胃酸稳定性以及对麦麸和豆皮的降解作用。结果显示,该复合酶中含有木聚糖酶、β-葡聚糖酶、果胶酶、甘露聚糖酶和纤维素酶(CMCase)等多种酶。在pH值4.0~7.0之间,木聚糖酶、β-葡聚糖酶、甘露聚糖酶和CMCase均有很好的表现活力;在pH值2.5~4.0之间,果胶酶有较好的表现活力。在生长猪的胃液(pH2.8)中40℃保温6h,β-葡聚糖酶、果胶酶、甘露聚糖酶和CMCase的酶活损失都不超过30%。在40℃和pH5.5条件下保温8h,可以降解麦麸(无淀粉)和豆皮18%的干物质。与传统的动物饲养试验相比,这种分析评判饲料酶的方法具有简便、快速和客观等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号