首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76147篇
  免费   3640篇
  国内免费   109篇
林业   3330篇
农学   2361篇
基础科学   576篇
  8533篇
综合类   15455篇
农作物   3067篇
水产渔业   3182篇
畜牧兽医   37688篇
园艺   880篇
植物保护   4824篇
  2019年   765篇
  2018年   899篇
  2017年   961篇
  2016年   973篇
  2015年   792篇
  2014年   986篇
  2013年   2745篇
  2012年   1952篇
  2011年   2286篇
  2010年   1374篇
  2009年   1350篇
  2008年   2155篇
  2007年   2091篇
  2006年   1983篇
  2005年   1971篇
  2004年   1877篇
  2003年   1894篇
  2002年   1898篇
  2001年   1902篇
  2000年   1847篇
  1999年   1521篇
  1998年   641篇
  1995年   693篇
  1992年   1438篇
  1991年   1519篇
  1990年   1582篇
  1989年   1614篇
  1988年   1520篇
  1987年   1464篇
  1986年   1483篇
  1985年   1473篇
  1984年   1233篇
  1983年   1078篇
  1982年   768篇
  1981年   745篇
  1980年   699篇
  1979年   1195篇
  1978年   958篇
  1977年   854篇
  1976年   803篇
  1975年   894篇
  1974年   1160篇
  1973年   1099篇
  1972年   1180篇
  1971年   1125篇
  1970年   1061篇
  1969年   903篇
  1968年   735篇
  1967年   868篇
  1966年   715篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Carbon storage in the soils on the Qinghai–Tibetan Plateau plays a very important role in the global carbon budget. In the 1990s, a policy of contracting collective grasslands to smaller units was implemented, resulting in a change from the traditional collective grassland management to two new management patterns: a multi‐household management pattern (MMP: grassland shared by several households without enclosures) and a single‐household management pattern (SMP: grassland enclosed and used by only one household). In 2016, 50 MMP and 54 SMP winter pastures on the Qinghai–Tibetan Plateau were sampled to assess the differences in soil organic carbon (SOC) between the two management patterns. Results showed that average SOC was significantly greater under MMP than under SMP, with an estimated 0.41 Mg C/ha/yr lost due to SMP following the new grassland contract. Based on the government's grassland policy, four grassland utilization scenarios were developed for both summer and winter pastures. We found that if the grassland were managed under SMP, likely C losses ranged between 0.31 × 107 and 6.15 × 107 Mg C/yr across the Qinghai–Tibetan Plateau relative to MMP, which more closely resembles pre‐1990s grassland management. Previous estimates of C losses have only considered land use change (with cover change) and ignored the impacts driven by land management pattern changes (without cover change). The new data suggest that C losses from the Qinghai–Tibetan Plateau are greater than previously estimated, and therefore that the grassland contract policy should be reviewed and SMP households should be encouraged to reunite into the MMP. These findings have potential implications for land management strategies not only on the Qinghai–Tibetan Plateau but also other grazing regions globally where such practices may exist.  相似文献   
2.
Accurate hybrid prediction and knowledge about the relative contribution of general (GCA) and specific combining ability (SCA) are of utmost importance for efficient hybrid breeding. We therefore evaluated 91 triticale single-cross hybrids in field trials at seven environments for plant height, heading time, fresh biomass, dry matter content and dry biomass. Fresh and dry biomass showed the highest proportion (23%) of variance due to SCA. Prediction accuracies based on GCA were slightly higher than based on mid-parent values. Utilizing parental kinship information yielded the highest prediction accuracies when both parental lines have been tested in other hybrid combinations, but still moderate-to-low prediction accuracies for two untested parents. Thus, hybrid prediction for biomass traits in triticale is currently promising based on mid-parent values as emphasized by our simulation study, but can be expected to shift to GCA-based prediction with an increasing importance of GCA due to selection in hybrid breeding. Moreover, the performance of potential hybrids between newly developed lines can be predicted with moderate accuracy using genomic relationship information.  相似文献   
3.
Ray blight caused by Stagonosporopsis tanaceti is one of the most important diseases of pyrethrum (Tanacetum cinerariifolium), a perennial herbaceous plant cultivated for the extraction of insecticidal pyrethrins in Australia. The disease is responsible for complete yield loss in severe outbreaks. Infected seed is considered as the principal source of S. tanaceti. Infection hyphae remain only in the seed coat and not in the embryo, resulting in pre- and post-emergence death of seedlings and latent infection. Therefore, quantification of the level of infection by S. tanaceti within seed using a qPCR assay is important for efficient management of the disease. Stagonosporopsis tanaceti completes its life cycle within 12 days after leaf infection through production of pycnidia and can infect every tissue of the pyrethrum plant except the vascular and root tissues. Ray blight epidemics occur in pyrethrum fields through splash dispersal of pycnidiospores between adjacent plants. Besides steam sterilization, thiabendazole/thiram and fludioxonil are effective seed-treating chemicals in controlling S. tanaceti before planting begins. Ray blight is currently managed in the field through the foliar application of strobilurin fungicides in the first 1–2 years of crop establishment. Later on, difenoconazole and multisite specific fungicides in the next 2–3 years during early spring successfully reduce ray blight infestation. Avoiding development of resistance to fungicides will require more sustainable management of ray blight including the development and deployment of resistant cultivars.  相似文献   
4.
Plants have developed different mechanisms to absorb and solubilize phosphorus (P) in the soil, especially in environments with low P availability. This study evaluated the effects of different winter cover crops on soil P availability in a clayey subtropical (Hapludox) soil receiving soluble P fertilizer and a rock phosphate applied to the summer crop, under no‐tillage. The experiment was carried out over 3 yrs (2009–2011) with five different cover crop species: common vetch, fodder radish, ryegrass, black oat, white clover and fallow as control. The soil was sampled after the third year of cover crop cultivation and analysed for inorganic and organic P forms according to the well‐established Hedley fractionation procedure. Phosphate fertilizers promoted accumulation of both labile and nonlabile P pools in soil in the near surface layer, especially under rock phosphate. Fertilizer applications were not able to change P fractions in deeper layers, emphasizing that the Brazilian clayey soils are a sink of P from fertilizer and its mobility is almost nil. Although the cover crops recycled a great amount of P in tissue, in a short‐term evaluation (3 yrs) they only changed the content of moderately labile P in soil, indicating that long‐term studies are needed for more conclusive results.  相似文献   
5.
Environmental conditions influence phenology and physiological processes of plants. It is common for maize and sorghum to be sown at two different periods: the first cropping (spring/summer) and the second cropping (autumn/winter). The phenological cycle of these crops varies greatly according to the planting season, and it is necessary to characterize the growth and development to facilitate the selection of the species best adapted to the environment. The aim of this study was to characterize phenological phases and physiological parameters in sorghum and maize plants as a function of environmental conditions from the first cropping and second cropping periods. Two parallel experiments were conducted with both crops. The phenological characterization was based on growth analyses (plant height, leaf area and photoassimilate partitioning) and gas exchange evaluations (net assimilation rate, stomatal conductance, transpiration and water-use efficiency). It was found that the vegetative stage (VS) for sorghum and maize plants was 7 and 21 days, respectively, longer when cultivated during the second cropping. In the first cropping, the plants were taller than in the second cropping, regardless of the crop. The stomatal conductance of sorghum plants fluctuated in the second cropping during the development period, while maize plants showed decreasing linear behaviour. Water-use efficiency in sorghum plants was higher during the second cropping compared with the first cropping. In maize plants, in the second cropping, the water-use efficiency showed a slight variation in relation to the first cropping. It was concluded that the environmental conditions as degree-days, temperature, photoperiod and pluvial precipitation influence the phenology and physiology of both crops during the first and the second cropping periods, specifically cycle duration, plant height, leaf area, net assimilation rate, stomatal conductance and water-use efficiency, indicating that both crops respond differentially to environmental changes during the growing season.  相似文献   
6.
New Forests - Native trees from the Caribbean were tested for seed desiccation responses, by adapting the “100-seed test” protocol. Ninety-seven seed lots of 91 species were collected...  相似文献   
7.
Journal of Crop Science and Biotechnology - The cultivation of sweet corn is expanding in Brazil, but there are serious constraints about the availability of commercial cultivars. The selection of...  相似文献   
8.
New Forests - Adventitious rooting (AR) is an obligatory step for vegetative propagation of commercial woody species. Paper industries have interest in Eucalyptus globulus Labill and its hybrids...  相似文献   
9.
10.
山羊肺淋巴系的研究   总被引:2,自引:0,他引:2  
24例山羊肺经肺实质和肺胸膜下注射30%普鲁士蓝氯仿溶液,剖查其器官内淋巴管及淋巴流向。结果表明,山羊肺的器官内淋巴管有浅淋巴管和深淋巴管2种。左肺尖叶淋巴管注入左支气管肺淋巴结和气管支气管左淋巴结,左肺心叶淋巴管注入左支气管肺淋巴结、气管支气管左淋巴结和气管支气管中淋巴结,左肺膈叶淋巴管注入气管支气管左淋巴结、气管支气管中淋巴结和纵隔后淋巴结;右肺尖叶淋巴管注入右支气管肺淋巴结和气管支气管前淋巴结,右肺心叶淋巴管注入右支气管肺淋巴结和气管支气管右淋巴结,右肺膈叶淋巴管注入气管支气管右淋巴结、气管支气管中淋巴结和纵隔后淋巴结,右肺副叶淋巴管注入右支气管肺淋巴结、气管支气管中淋巴结和纵隔后淋巴结。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号