首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
园艺   3篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Landscape Ecology - Insect herbivores comprise the majority of macroinvertebrate communities of temperate grasslands and act as drivers for important ecosystem functions. Landscape- and local-level...  相似文献   
2.
Unexpected long-range edge-to-forest interior environmental gradients   总被引:1,自引:1,他引:0  
We examined the relationships between distance-to-edge and environmental factors inferred from mean plant indicator values across large distance-to-edge and patch size gradients. Floristic composition, landscape metrics and site variables (climate, soil and forest management) were collected on 19,989 plots in 1,801 forest patches in Northern France using the French National Forest Inventory. Statistical models were applied to mean plant indicator values (MIV) from Ellenberg and Ecoplant databases for soil pH, soil nitrogen (N), soil humidity (F), light (L) and air temperature (Ta) using distance-to-edge and forest patch size as predictors. The five mean indicator values significantly varied with distance-to-edge and MIV pH, N and Ta decreased over distances in excess of 500 m. Consistent very long edge-to-interior gradients were also detected for site variables. The distance-to-edge effect remained significant after controlling for site differences, especially for MIV pH and N. Significant edge-to-core gradients of MIV were detected over much larger ranges than previously recognised. Neither the presence of an ecological boundary between forest and the surrounding matrix, nor microclimate, soil or forest management heterogeneity within forest patches can fully explain this long edge-to-interior gradient observed in MIV. Two hypotheses are discussed for MIV pH and N: (1) soil eutrophication, due to atmospheric N deposition, which could occur deeper into forest-cores than previously acknowledged; (2) land use legacies, as the periphery of ancient forests is more often occupied by recent forests where former agricultural practices have irreversibly modified topsoil properties. Land use history data would help identify the drivers underlying these long-range edge gradients.  相似文献   
3.
Context

Dead wood is a key habitat for saproxylic species, which are often used as indicators of habitat quality in forests. Understanding how the amount and spatial distribution of dead wood in the landscape affects saproxylic communities is therefore important for maintaining high forest biodiversity.

Objectives

We investigated effects of the amount and isolation of dead wood on the alpha and beta diversity of four saproxylic species groups, with a focus on how the spatial scale influences results.

Methods

We inventoried saproxylic beetles, wood-inhabiting fungi, and epixylic bryophytes and lichens on 62 plots in the Sihlwald forest reserve in Switzerland. We used GLMs to relate plot-level species richness to dead wood amount and isolation on spatial scales of 20–200 m radius. Further, we used GDMs to determine how dead wood amount and isolation affected beta diversity.

Results

A larger amount of dead wood increased beetle richness on all spatial scales, while isolation had no effect. For fungi, bryophytes and lichens this was only true on small spatial scales. On larger scales of our study, dead wood amount had no effect, while greater isolation decreased species richness. Further, we found no strong consistent patterns explaining beta diversity.

Conclusions

Our multi-taxon study shows that habitat amount and isolation can strongly differ in the spatial scale on which they influence local species richness. To generally support the species richness of different saproxylic groups, dead wood must primarily be available in large amounts but should also be evenly distributed because negative effects of isolation already showed at scales under 100 m.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号