首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
犬附红细胞体PCR检测方法的建立与应用   总被引:1,自引:0,他引:1  
根据Genbank中已经发表的犬附红细胞体基因序列设计合成一对特异性引物,通过聚合酶链式反应(PCR)扩增出一条与目的片段大小一致,约630bp的基因片段,建立了犬附红细胞体PCR快速检测方法。研究结果表明该方法只能从犬附红细胞体中扩增出约630bp的基因片段。敏感性试验表明该方法最低可检测到10pg的DNA。利用该方法对临床上12例疑似犬附红细胞体血样进行检测,检出率75%,而直接镜检的阳性检出率仅为66.7%。  相似文献   

2.
通过将GenBank上报道的犬附红细胞体16S rRNA基因序列与其他物种同源序列进行比对,取其种间特异性和种内保守性较高区域设计1对引物,以吉林省延边地区犬附红细胞体基因组DNA为模板进行PCR扩增,并进行特异性、敏感性试验验证,建立犬附红细胞体PCR诊断方法,应用于临床检测。结果表明:该方法可成功扩增出大小为529 bp的犬附红细胞体片段,与GenBank中German no.1(AY150973.1)序列同源性为98.5%。其最低DNA检测量为25 fg/μL,不与犬巴贝斯虫、犬弓形虫及猪附红细胞体等病原体基因组产生交叉反应。同时通过对57份犬血液样本的检测结果说明,该方法检出率明显高于姬姆萨染色镜检法,且避免了假阳性。本试验所建立的PCR检测方法具有特异、敏感、准确等优点,为犬附红细胞体病的诊断提供了一种可靠的方法。  相似文献   

3.
根据GenBank上发表的猪附红细胞体16S rRNA基因序列(登录号U88565)设计合成2对引物,建立了猪附红细胞体单管巢式PCR诊断方法,经酶切分析、单管巢式PCR进一步鉴定后进行序列测定,并与血涂片染色镜检、常规PCR进行了比较。结果:扩增的猪附红细胞体基因序列与GenBank中发表的猪附红细胞体基因序列(U88565)同源性为96%;特异性试验表明,设计的引物不能扩增弓形虫、链球菌、大肠杆菌、葡萄球菌及羊附红细胞体等病原体;敏感性试验表明,单管巢式PCR诊断方法最低能够检测出0.116 fg的标准模板DNA。通过对75份血液样本的检测表明,建立的单管巢式PCR方法明显优于血涂片染色镜检法及常规PCR方法,具有较高的敏感性和实用性。本试验建立的单管巢式PCR诊断方法具有特异、敏感、实用等优点,为猪附红细胞体的检测提供了一种新型、可靠的诊断技术。  相似文献   

4.
根据Genbank中已经发表的犬附红细胞体16sRNA基因序列设计合成一对特异性引物,通过聚合酶链式反应(PCR)扩增出一条与目的片段大小一致,约630 bp的基因片段,建立了PCR快速检测方法。以PCR检测方法及瑞氏、姬姆萨、吖啶橙染色法为基础对20例犬附红细胞体病例进行检测,比较四种方法的检出率。结果表明,建立的PCR检测方法的检出率略高于吖啶橙染色,明显高于瑞氏、姬姆萨染色,可用于犬附红细胞体的快速诊断和流行病学调查。  相似文献   

5.
根据Genbank中已经发表的犬附红细胞体16sRNA基因序列设计合成一对特异性引物,通过聚合酶链式反应(PCR)扩增出一条与目的片段大小一致,约630 bp的基因片段,建立了PCR快速检测方法.以PCR检测方法及瑞氏、姬姆萨、吖啶橙染色法为基础对20例犬附红细胞体病例进行检测,比较四种方法的检出率.结果表明,建立的PCR检测方法的检出率略高于吖啶橙染色,明显高于瑞氏、姬姆萨染色,可用于犬附红细胞体的快速诊断和流行病学调查.  相似文献   

6.
根据GenBank上最新发布的猪附红细胞体基因组序列(NC-015155)设计一对引物,并以吉林省延边地区猪附红细胞体基因组DNA为模板,建立猪附红细胞体50 S核糖体基因PCR诊断方法,通过特异性、敏感性及临床应用试验验证,快速准确的检测出猪附红细胞体.试验结果显示,建立的猪附红细胞体PCR诊断方法扩增片段大小为10...  相似文献   

7.
为建立一种特异、敏感、准确的猪附红细胞体诊断技术,本试验根据GenBank上发表的猪附红细胞体全基因组(NC-015153.1)中的DnaJ基因序列设计合成了一对特异性引物,建立了猪附红细胞体DnaJ基因PCR诊断方法,进行了特异性和敏感性试验,并与姬姆萨染色镜检方法进行了临床应用比较.结果,猪附红细胞体DnaJ基因PCR诊断方法扩增片段大小为868 bp(GenBank登录号为;JN247670),与GenBank中(NC_015153.1)同源性为99%,该方法扩增不出犬新孢子虫、牛附红细胞体、犬附红细胞体等基因片段,最低检测猪附红细胞体DNA量为124 fg/μL,通过对53份猪血液样本的检测,并与血液涂片姬姆萨染色镜检比较,说明建立的PCR诊断方法具有特异、敏感、准确等优点,完全适用于猪附红细胞体的诊断.  相似文献   

8.
温氏附红细胞体部分16S rRNA基因的序列测定和分析   总被引:2,自引:0,他引:2  
从确诊为附红细胞体感染的黄牛无菌采集血样,抽提附红细胞体基因组DNA,用实验设计的能扩增多种动物血营养菌部分16SrRNA基因的通用引物进行PCR扩增,结果扩增出大小约为370bp的DNA片段。PCR产物序列测定和系统进化分析显示,实验获得的核苷酸序列为温氏附红细胞体的16SrRNA基因,与国外报道的温氏附红细胞体的同源性为97%。反映出不同地理株的温氏附红细胞体存在一定的遗传差异,为牛附红细胞体病的诊断和分子流行病学研究提供科学依据。  相似文献   

9.
猪附红细胞体特异性基因的克隆和PCR诊断方法的建立   总被引:10,自引:0,他引:10  
根据2003年Hoelzle发表的猪附红细胞体的基因组序列(AJ504999)设计一对特异性引物,对病料样品进行PCR扩增并将其产物克隆到pMD18-T载体后测序,结果表明扩增出的片段为603bp,同源性分析表明该序列与参考基因组序列同源性为100%,反映出我国分离株与国外株其基因无差异,特异性和敏感性试验表明,所建立的PCR诊断方法与常见的支原体、细菌及原虫无交叉反应,能检测到猪附红细胞体血液基因组DNA最低量为0.65ng/mL,该方法具有快速、特异、敏感等特点,为猪附红细胞体病的快速诊断及流行病学调查提供了新的手段。  相似文献   

10.
猪附红细胞体PCR检测方法的建立和初步应用   总被引:22,自引:1,他引:22  
基于猪附红细胞体广东株16S rRNA基因的序列特点,设计合成种特异性引物,建立了猪附红细胞体PCR检测方法。该方法能特异性扩增523bp的猪附红细胞体16SrRNA基因片段,而对猪丹毒杆菌G4T10株、猪链球菌STl71株、多杀性巴氏杆菌E0630株、猪胸膜肺炎放线杆菌、猪肺炎支原体、鸡毒支原体和猫血巴尔通氏体CA株的基因组DNA没有扩增带出现。对猪附红细胞体基因组DNA的最小检测量为160pg。通过对38份临床样品的检测,8份为猪附红细胞体感染阳性,其余为阴性。结果表明,建立的PCR检测方法具有极高的敏感性和特异性,可用于急性猪附红细胞体病和临床健康带菌猪的诊断。  相似文献   

11.
羊附红细胞体病PCR检测方法的建立   总被引:5,自引:0,他引:5  
根据羊附红细胞体的16S rRNA基因参考序列,设计1对特异性引物.建立了检测羊附红细胞体的PCR技术。用本方法从感染血样中特异扩增出1条预期大小为1169bp的片段。该方法灵敏、快速、特异性高.可用于羊附红细胞体病的早期快速诊断和流行病学调查。  相似文献   

12.
猪附红细胞体PCR诊断方法的建立及应用   总被引:1,自引:0,他引:1  
根据基因库中已登录的猪附红细胞体新的基因组DNA序列设计引物,从疑似猪附红细胞体(Mycoplasma suis)感染猪全血样品基因组DNA中扩增出了预期长度666 bp的目的DNA片段,通过对24份临床疑似病例样品的PCR扩增及其他病原微生物基因组DNA的特异性扩增试验,建立了E.suis的PCR诊断方法;进一步对PCR产物克隆、测序分析表明,与国外已报道的AJ504999株相关区域核苷酸、氨基酸序列同源性分别为98.19%和96.85%,表明我国分离株与国外株基因组存在差异。  相似文献   

13.
Background – Canine squamous cell carcinomas (SCCs) most frequently develop on the ventral abdomen and are thought to be caused by ultraviolet (UV) light. Papillomaviruses (PVs) have been associated with cutaneous SCCs in multiple species, including dogs. Hypothesis – That PVs act as cofactors in canine UV‐induced SCCs. Animals – The study was performed on skin from the ventrum of 60 dogs. These samples included 20 SCCs, 20 haemangiosarcomas and 20 samples of clinically normal skin. Two canine viral plaques were included as positive controls for PV. Methods – PCR was used to amplify PV DNA from all samples. Primers used included two sets of consensus primers and two sets of primers that were designed specifically to amplify PV DNA sequences detected in the viral plaques. Results – The MY09/11 consensus primers amplified PV DNA from both viral plaques. One plaque contained a DNA sequence (CfPV‐JM) that had been previously reported from a dog with multiple cutaneous SCCs. The other plaque contained a previously unreported PV DNA sequence. No PV DNA was amplified by either consensus primer from any of the ventrum skin samples. Primers designed specifically to amplify the CfPV‐JM sequence amplified DNA from one SCC, but no other sample. No PV DNA was amplified using the other specific PCR primer set. Conclusions and clinical importance – These results do not support a significant role for PVs in SCC development from the ventrum of dogs. However, they contribute another PV sequence to the list of PVs that have been associated with viral plaque development in dogs.  相似文献   

14.
A pair of oligonucleotide primers were designed according to the nucleotide sequence of the P18 gene of Babesia gibsoni (B. gibsoni), NRCPD strain, and were used to detect parasite DNA from blood samples of B. gibsoni-infected dogs by polymerase chain reaction (PCR). PCR was specific for B. gibsoni since no amplification was detected with DNA from B. Canis or normal dog leucocytes. PCR was sensitive enough to detect parasite DNA from 2.5 microl of blood samples with a parasitemia of 0.000002%. PCR detected parasite DNA from 2 to 222 days post-infection in sequential blood samples derived from a dog experimentally infected with B. gibsoni. The detection of B. gibsoni DNA by PCR was much earlier than the detection of antibodies to B. gibsoni in blood samples by the indirect fluorescent antibody test (IFAT) or that of the parasite itself in Giemsa-stained thin blood smear film examined by microscopy. In addition, 28 field samples collected from dogs in Kansai area, Japan, were tested for B. gibsoni infection. Nine samples were positive in blood smears, 9 samples were positive by IFAT and 11 samples were positive for B. gibsoni DNA by PCR. The nucleotide sequences of PCR products from all 11 samples found positive by PCR were completely identical to that of the P18 gene of the B. gibsoni, NRCPD strain. These results suggest that PCR provides a useful diagnostic tool for the detection of B. gibsoni infection in dogs.  相似文献   

15.
为了研究猪附红细胞体信号识别颗粒54(SRP54)基因的功能,试验根据GenBank上发表的猪附红细胞体KI3806全基因组序列(登录号为NC015153.1)中信号识别颗粒(SRP)蛋白基因设计合成1对特异性引物,采用PCR方法扩增猪附红细胞体SRP54基因片段,将扩增产物克隆至pMD18-T载体上,重组质粒经PCR和酶切鉴定后测序,并将SRP54基因与pVAXⅠ真核表达载体连接。结果表明:克隆的SRP54基因片段长1 173 bp,与GenBank中原序列同源性为97%,构建的真核表达质粒pVAXⅠ-SRP54经PCR和酶切鉴定正确,为猪附红细胞体SRP54基因的后续研究奠定了基础。  相似文献   

16.
OBJECTIVE: To describe the detection of Ehrlichia platys in free-roaming dogs in Central Australia. PROCEDURE: Blood samples were collected from four dogs and examined for bacterial 16S ribosomal DNA using Polymerase Chain Reaction (PCR)-based assays. The three positive samples obtained were then sequenced and identification of the PCR product carried out. As a result of all three samples being identical to or closely related to part of the 16S rRNA gene of E. platys, blood samples were subsequently obtained from a further 24 dogs. These samples were screened using a PCR-assay to determine the presence of Ehrlichia DNA using genus-specific primers. The positive samples obtained from the screening process were then subjected to a further PCR-assay using E. platys specific primers. RESULTS: Of 28 dogs sampled, Ehrlichia DNA was detected in the blood of 13 dogs. Sequencing of the amplicons obtained indicated a high homology with the 16S rRNA gene for E. platys. When the E. platys-specific PCR was performed for 10 of those dogs, the 678 bp product obtained from the PCR amplification confirmed the identification as part of the 16S rRNA gene of E. platys in all 10 dogs. CONCLUSION: This study reports for the first time Ehrlichia carriage by dogs in Australia. It also indicates the usefulness of the PCR technique in rapidly and accurately identifying diseases that are otherwise difficult to detect. By using universal primers directed against bacterial 16S ribosomal DNA and sequencing analysis, the detection of potentially pathogenic Ehrlichia organisms that had not previously been found in Australia has been made possible.  相似文献   

17.
The 16S ribosomal RNA (rRNA) gene of Eperythrozoon suis was amplified using gene-specific primers developed from GenBank sequence accession U88565. The gene was subsequently cloned and sequenced. Based on these sequence data, 3 sets of E. suis-specific primers were designed. These primers selectively amplified 1394, 690, and 839 base-pair (bp) fragments of the 16S rRNA gene from DNA of E. suis extracted from the blood of an experimentally infected pig during a parasitemic episode. No polymerase chain reaction (PCR) products were amplified from purified DNA of Haemobartonella felis, Mycoplasma genitalium, or Bartonella bacilliformis using 2 of these primer sets. When the primer set amplifying the 690-bp fragment was used, faint bands were observed with H. felis as the target DNA. No PCR products were amplified from DNA that had been extracted from the blood of a noninfected pig or using PCR reagents without target DNA. The detection limits for E. suis by competitive quantitative PCR were estimated to range from 57 and 800 organisms/assay. This is the first report of the utility of PCR-facilitated diagnosis and quantitation of E. suis based on the 16S rRNA gene. The PCR method developed will be useful in monitoring the progression and significance of E. suis in the disease process in the pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号