首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimation of genome-wide haplotype effects in half-sib designs   总被引:2,自引:1,他引:1  
Genome-wide estimated breeding values can be computed from the simultaneous estimates of the effects of small intervals of DNA throughout the genome on a trait or traits of interest. Small intervals or segments of DNA can be created by the use of thousands of single nucleotide polymorphisms (SNP) available in panels of 10, 25 and 50 thousand SNP. A simulation study was conducted to compare factors that could influence the accuracy of genome-wide selection. Factors studied were the heritability of the trait, dispersion of quantitative trait loci (QTL) across the genome and size of the QTL effects. A 100-cM genome was assumed with 100 equally spaced SNP markers and 10 QTL. A granddaughter design was constructed with 20 sires and 100 sons per sire. Population-wide linkage disequilibrium was assumed to be sufficient after 25 generations of random mating starting with 30 sires and 400 dams. Best linear unbiased prediction was used to simultaneously estimate the effects of 99 SNP intervals, based on determining the SNP haplotype of each son inherited from the sire. Indicator variables were used in the model to indicate haplotype transmission. A genome-wide estimated breeding value was calculated as the sum of the appropriate haplotype interval estimates for each son. Correlations between estimated and true breeding values ranged from 0.60 to 0.79. Situations with unequally sized QTL effects and randomly dispersed QTL gave higher correlations. QTL positions could be estimated to within 2 cM or less.  相似文献   

2.
The objective of this study was to evaluate whether the efficacy of marker assisted selection (MAS) could be improved by considering a confidence interval (CI) of QTL position. Specifically, MAS was applied for within-family selection in a stochastic simulation of a closed nucleus herd. The location and effect of the QTL were estimated by least squares interval mapping with a granddaughter design and marker information was then used in a top down scheme. Three approaches were used to select the best bull within full sibships of 3 or 40 bulls. All three were based on the probability of inheriting the favorable allele from the grandsire (PROB). The first method selected the sib with the highest PROB at the location with the highest F-ratio (MAX). The other two approaches were based on sums of estimated regression coefficients weighted by PROB at each cM within a 95% CI based on either bootstrapping (BOOT) or approximate LOD scores (LOD).
Accounting for CI increased the relative genetic gain in all scenarios. The average breeding value (BV) of the selected bulls was increased by 2.00, 2.60 and 2.59% when MAS was applied using MAX, BOOT and LOD, respectively, compared to random selection (h2=0.30). Selected bulls carried the correct allele in 63.0, 68.5, 67.6 and 50.1% of the cases for MAX, BOOT, LOD and random selection, respectively.  相似文献   

3.
The aim of this study was to more precisely map a previously reported quantitative trait locus (QTL) affecting somatic cell score on Bos taurus autosome 2 by increasing the number of markers fourfold, analysing more families and exploiting within‐population linkage disequilibrium (LD). A granddaughter design of 10 German Holstein grandsire families with 1121 progeny tested sons was used. Twenty‐six markers with an average marker spacing of 3.14 cM were genotyped along 81.6 cM. Linkage analysis (LA) was performed using variance‐component methodology. The incorporation of LD was first done using variance‐component methods followed by regression on marker alleles. LA revealed genome‐wide significance (LOD > 3) at 15 contiguous marker‐intervals, with the maximum test‐statistic between DIK2862 and BMS778 and a 1‐lod drop‐off interval of 38 cM. While the variance‐component methods could not detect any LD, two individual markers with a significant effect (ILSTS098, p < 0.05; BMS778, p < 0.01) were found by regression analysis. Compared with previous results QTL‐localisation was substantially narrowed; further fine‐mapping should focus on the close vicinity of BMS778.  相似文献   

4.
A granddaughter design containing five half-sib families from German Holstein–Friesian cattle was subjected to QTL analysis starting from the hypothesis of the existence of more than one QTL on chromosome BTA 6 affecting milk yield, fat yield, protein yield and content of fat and protein. The marker map consisted of 16 microsatellite markers with marker heterozygosity varying from 0.44 to 0.94. Two statistical methods were used: least squares (LS) and residual maximum likelihood (REML) allowing for two QTL simultaneously. The test statistics were calculated in steps of one cM along the chromosome. Significant QTL at the chromosome-wise 5% level according to the permutation test critical value were detected mainly in single families. The results were in conformance with the findings of several previous studies with approximate positions of putative QTL at 49 cM for milk yield, at 70 cM for fat and protein yield, and at 46 cM for protein content. Further QTL positions were suggested mostly for yield traits and protein content in the area of the casein gene cluster at 90…95 cM. The results of the two-QTL model analyses when using LS led to family specific inferences of a second QTL for fat yield and content of protein and fat, partly supported by the epistasis model.  相似文献   

5.
为了精细定位高丹草低氢氰酸含量性状主效数量性状基因座QTL PA7-2,对进一步开展低氰性状相关候选基因挖掘、功能解析及分子标记辅助育种等研究提供理论依据。本试验在前期研究工作基础上,从高丹草(散穗高粱Scattered ear Sorghum bicolor×红壳苏丹草Red shell Sorghum sudanense)F2代1 200个分离群体单株中筛选出121个QIRs(Quantitative trait locus(QTL)isogenic recombinants)植株,选出低氰和高氰极端株套袋自交获得F3代分离群体,选出QIRs群体植株130个,利用BSA-SSR(Bulked segregation analysis(BSA)and simple sequence repeats)技术构建了长度为230.7 cM、密度为4.81 cM的遗传连锁图谱,通过定位分析明确了QTL PA7-2的位置在38 cM处,位于SSR标记Sobic.8 g1-600和XM00242-400之间。经与高粱基因组比对分析,首次将低氰QTL PA7-2精细定位至高粱8号染色体3.77 Mb(51.415 Mb~55.182 Mb)的物理区间,并发现SSR标记SORBI4G3-600与其紧密连锁。  相似文献   

6.
Mucin, the main macromolecular component of mucus, contains a peptide backbone rich in proline, threonine and serine (PTS) and oligosaccharide side chains. Glycosylation increases the molecular size of mucins and restricts access of proteases to mucin. Based on these characteristics, Faure et al. [Faure, M., Moënnoz, D., Montigon, F., Fay, L.B., Breuille, D., Finot, P.A., Ballèvre, O. and J. Boza. 2002. Development of a rapid and convenient method to purify mucins and determine their in vivo synthesis rate in rats. Anal. Biochem 307: 244–251.] developed a method to purify mucins from intestinal mucosa. In this method, mucins are reduced (RD) and digested with protease (dig) prior to isolation using size-exclusion chromatography. Our objective was to refine this method to purify mucins from pig colonic mucosa. Mucosal scrapings were homogenized in 5 mM EDTA and were either treated with 7 μL of protease inhibitor cocktail (PIC; UndigUnRD) or incubated with 100 μL of Protease at 37 °C for 80 min and then subsequently treated with PIC (digUnRD). Homogenates were fractionated based on size using a Sepharose CL-4B column. Mucin-containing fractions were identified by a combination of SDS-PAGE and staining techniques and were pooled. Mucin purified using digUnRD method had higher proportions of PTS compared to crude mucin purified using UndigUnRD method (31.9 vs. 23.5 mol/100 mol AA; P < 0.005). The proportion of PTS in mucin purified using digUnRD was also higher than mucin purified using digRD (31.9 vs. 25.7 mol/100 mol AA; P < 0.05). The refined method employing protease digestion and no reduction can be successfully applied to purify mucins from pig colonic mucosa.  相似文献   

7.
We used a half-sib family of purebred Japanese Black (Wagyu) cattle to locate economically important quantitative trait loci. The family was composed of 348 fattened steers, 236 of which were genotyped for 342 microsatellite markers spanning 2,664 cM of 29 bovine autosomes. The genome scan revealed evidence of 15 significant QTL (<5% chromosome-wise level) affecting growth and carcass traits. Of the 15 QTL, six QTL were significant at the 5% experiment-wise level and were located in bovine chromosomes (BTA) 4, 5, and 14. We analyzed these three chromosomes in more detail in the 348 steers, with an average marker interval of 1.2 cM. The second scan revealed that the same haplotype of the BTA 4 region (52 to 67 cM) positively affected LM area and marbling. We confirmed the QTL for carcass yield estimate on BTA 5 in the region of 45 to 54 cM. Five growth-related QTL located on BTA 14, including slaughter and carcass weights, were positively affected by the same region of the haplotype of BTA 14 (29-51 cM). These data should provide a useful reference for further marker-assisted selection in the family and positional cloning research. The research indicates that progeny design with moderate genotyping efforts is a powerful method for detecting QTL in a purebred half-sib family.  相似文献   

8.
The objective of this study was to estimate the space occupied by a pig, calculated from direct measurements on the animal or from digital images. A total of 100 pigs with body weight (BW) ranging from 47 to 198 kg were individually weighed and measured for body length, back and shoulder height. The area of the rectangle into which each pig can be fitted was calculated, following the same method as Petherick and Baxter [Petherick, J.C., Baxter, S.H., 1981. Modelling the static spatial requirements of livestock. In: MacCormack, J.A.D. (Ed.), Proceedings of the CIGR Section II Seminar on Modelling, Design and Evaluation of Agricultural Buildings, Aberdeen, August 1981, Scottish Farm Buildings Investigation Unit, Bucksburn, Aberdeen, UK. pp 75–82]. In addition, pictures of the pigs were taken with a digital camera at the same distance and resolution to estimate the area of the geometrical shape of each animal by counting the number of pixels. Values of Petherick and Baxter's data space (A = 0.047 × BW0.67) are significantly higher (p < 0.0001) than those found with our linear measurements (A = 0.041 × BW0.67). The areas calculated from linear measurements support the EU Council Directive 2001/88/EC for pigs in the weight class of 115–150 kg, but not for growing pigs. This is because the area recommended for pigs of 110 kg corresponds only to our minimum space allowance, as estimated from digital image analysis (A = 0.028 × BW0.67).  相似文献   

9.
A QTL affecting leg muscle and fat traits has been identified within the New Zealand Texel population. The QTL maps to a region on OAR 2 with a two-marker haplotype test established at markers BULGE20 and BM81124. These markers encompass the likely position of Growth Differentiation Factor 8 (GDF8). The pleiotropic effects of this QTL on meat quality traits are tested. Objective measures of meat quality including pH, color (L*, a*, and b*), and tenderness (as assessed by Warner-Bratzler shear force measurements) were assessed on longissimus and semi-membranosus muscles of 540 progeny from six Texel sires. Four of these sires were subsequently identified as segregating for leg muscle and fat traits. For these segregating sires, comparison of progeny that had inherited the favorable haplotype from their sire with those that had received the alternate haplotype revealed no significant differences in the meat quality traits assessed. This finding suggests that the muscling QTL does not have pleiotropic effects on meat quality. A general scan for meat quality QTL was carried out using genotype data for eight markers from FCB128 to RM356 flanking 122cM of OAR 2 using Haley-Knott regression. This analysis revealed two QTL for a single sire. A QTL detected in the region of Marker INRA40 for color L* mapped to a site close to the muscling QTL, but there was evidence to suggest it is at a distinct locus. The QTL in the region of Marker RM356 might map distal to Marker RM356, as no peak was observed. This QTL, which seems to affect pH, color a*, color b*, and Warner-Bratzler shear measurements, requires further characterization.  相似文献   

10.
为深入研究乙型脑炎病毒(JEV)NS1和NS1-2A蛋白的表达和免疫效果差异,本试验构建并扩增C-端含Flag标签的NS1和NS1-2A基因,利用T4 DNA连接酶分别连接到质粒pcDNA3.1(+)上,构建重组质粒pcDNA3.1-NS1-Flag和pcDNA3.1-NS1-2A-Flag。将这两种真核表达质粒分别转染BHK-21细胞,利用RT-PCR、IFA和Western blotting检测NS1和NS1-2A蛋白在体外的表达情况,用pcDNA3.1-NS1-Flag、pcDNA3.1-NS1-2A-Flag和pcDNA3.1(+)免疫BALB/c小鼠,检测这两种蛋白在体内的表达差异。结果显示,试验成功构建了NS1和NS1-2A基因的真核表达载体pcDNA3.1-NS1-Flag和pcDNA3.1-NS1-2A-Flag,IFA和Western blotting鉴定NS1和NS1-2A蛋白成功表达,重组质粒pcDNA3.1-NS1-Flag和pcDNA3.1-NS1-2A-Flag免疫小鼠后可诱发机体产生特异性体液免疫,pcDNA3.1-NS1-2A-Flag联合免疫组小鼠血清抗体效价和INF-γ细胞因子分泌水平比pcDNA3.1-NS1-Flag免疫组高,且与pcDNA3.1(+)空载体免疫组差异极显著(P<0.01);pcDNA3.1-NS1-Flag和pcDNA3.1-NS1-2A-Flag免疫组小鼠体内的INF-γ分泌量会增多,免疫第4周达到最高后逐渐降低。pcDNA3.1-NS1-Flag和pcDNA3.1-NS1-2A-Flag免疫小鼠能够刺激JEV特异性抗体的分泌和增强机体的细胞免疫功能,且NS1-2A联合基因的免疫效果优于NS1单一基因,为进一步研究JEV的非结构蛋白功能、研发NS1和NS1-2A基因疫苗奠定基础。  相似文献   

11.
【目的】 挖掘影响地方鸡体尺性状的有效SNP位点及功能基因, 给儋州鸡育种工作提供有效的数据基础和理论支撑。【方法】 共采集200只儋州鸡血样并提取基因组DNA, 利用10×全基因组重测序技术获得全基因组SNP标记并对试验个体基因型进行分型。使用EMMAX软件基于混合线性模型对70日龄的儋州鸡体尺性状(胫长、胫围、体斜长、胸宽、髋骨宽、胸深、龙骨长)进行全基因组关联分析。【结果】 共发现与胫长性状和胫围性状基因组水平显著相关的SNPs位点有12和8个, 与胫长性状相关SNPs分别定位于1、2、4和8号染色体上; 与胫围性状相关的SNPs定位于2、4、8和13号染色体上。预测与胫长相关的候选基因为KCNA1、TPK1、EZH2、FSTL5和AMY2A基因, 与胫围相关的候选基因为TPK1、FSTL5、AMY2ATGFBILECT2和IL-9。通过KEGG通路分析和GO注释发现, 8个基因参与钾离子跨膜转运、硫胺素新陈代谢、细胞增殖、钙离子结合、骨骼肌卫星细胞维持与骨骼肌再生、细胞受体相互作用、生长因子活性等生物学进程。【结论】 本研究发现了20个与儋州鸡体尺性状关联的SNPs位点, 并筛选到8个目标性状候选基因, 为儋州鸡育种提供候选的分子标记, 为地方鸡标记辅助选择提供新的思路。  相似文献   

12.
The detection and mapping of segregating quantitative trait loci (QTL) that influence withers height, hip height, hip width, body length, chest width, chest depth, shoulder width, lumbar width, thurl width, pin bone width, rump length, cannon circumference, chest girth, abdominal width and abdominal girth at weaning was conducted on chromosomal regions of bovine chromosome one. The QTL analysis was performed by genotyping half‐sib progeny of five Japanese Black sires using microsatellite DNA markers. Probability coefficients of inheriting allele 1 or 2 from the sire at specific chromosomal locations were computed. The phenotypic data of progeny were regressed on these probability coefficients in a within‐common‐parent regression analysis using a linear model that included fixed effects of sex, parity and season of birth, as well as age as a covariate. F‐statistics were calculated every 1 cM on a linkage map. Permutation tests of 10 000 iterations were conducted to obtain chromosome‐wide significance thresholds. A significant QTL for chest width was detected at 91 cM in family 3. The detection of this QTL boosts the prospects of implementing marker‐assisted selection for body conformation traits in Japanese Black beef cattle.  相似文献   

13.
A whole genome scan to map quantitative trait loci (QTL) for persistency of milk yield (PMY), persistency of fat yield (PFY), persistency of protein yield (PPY) and persistency of milk energy yield (PEY) was performed in a granddaughter design in the German Holstein dairy cattle population. The analysis included 16 paternal half‐sib families with a total of 872 bulls. The analysis was carried out for the first lactation and for the first three lactations combined using univariate weighted multimarker regression. Controlling the false discovery rate across traits and data sets at a level of 0.15 and treating the four persistency traits as different traits revealed 27 significant QTL. A total of 12 chromosomes showed significant QTL effects on a chromosomewise basis. The DGAT1 effect was highly significant for PPY and protein yield. A haplotype analysis using results of previous studies of the same design revealed a co‐segregation of various persistency QTL and QTL affecting health traits like dystocia and stillbirth and functional traits like non‐return rate 90 and somatic cell score.  相似文献   

14.
The objective of this study was to quantify the differences in the nutritive value over 4 seasons, of 7 C3 temperate grasses, 2 C4 tropical grasses and 11 clover species used as forages for dairy cows. The nutritive value was assessed in terms of nutrient content and the availability of effective rumen degradable protein, rumen by pass protein, metabolisable protein (MP) and fermentable metabolisable energy.

All species were grown in plots as monocultures under conditions of non limiting nutrients and moisture and harvested by mechanical means. All species had a high crude protein content and this resulted in a high effective rumen degradable protein: fermentable metabolisable energy ratio varying from 15, for cowpeas (Vigna unguiculata) to 29 for birdsfoot clover (Lotus corniculatus), and all were above the ratio of 11 required for optimal microbial protein synthesis in the rumen of dairy cows. The calculated availability of MP varied from 105 g/kg dry matter (DM) for cowpeas to 173 g/kg DM for berseem clover (Trifolium alexandrinum) indicating that all forages would be able to meet the requirements of dairy cows producing up to 30 L/milk/day, provided they were able to consume over 19 kg DM of forage/cow/day.

Grasses had much higher hemicellulose (neutral detergent fibre minus acid detergent fibre) content than legumes. Kikuyu (Pennisetum clandestinum), a C4 grass, had a higher proportion of hemicellulose content than the C3 temperate grasses. Perennial ryegrass (Lolium perenne) and kikuyu had a similar metabolisable energy (ME) density (9.9 MJ/kg DM) in summer. The mean ME density of perennial ryegrass, prairie grass (Bromus wildinowii) and short rotation ryegrass (Lolium multiflorum) winter was similar at 10.6 MJ/kg DM and slightly higher than cocksfoot (Dactylus glomeratus), phalaris (Phalaris tuberosa) and fescue (Fescue arundunicea) which had a mean ME density of 10 MJ/kg DM.

All forages grown were able to satisfy MP and ME requirements of dairy cows producing up to 30 L milk/cow/day, provided they were able to consume sufficient forage to achieve this level of production.  相似文献   


15.
【目的】探索犬酸性核磷蛋白32(canis acidic (leucine-rich) nuclear phosphoprotein 32 ku,caANP32)对不同物种A型流感病毒(Influenza A virus,IAV) RNA 聚合酶活性的影响。【方法】利用实时荧光定量PCR方法分析caANP32家族基因(caANP32A、caANP32B及caANP32E)的组织分布并对其进行扩增和克隆,评估caANP32家族蛋白对不同物种A型流感病毒RNA聚合酶活性的支持作用。【结果】caANP32家族基因在不同组织中分布相似,其中caANP32B基因组织丰度显著或极显著高于caANP32AcaANP32E基因(P<0.05;P<0.01),在心脏、盲肠和大脑中caANP32E基因组织丰度极显著或显著高于caANP32A基因(P<0.01;P<0.05),在肝脏、肺脏等组织中caANP32EcaANP32A基因丰度均无显著差异(P>0.05)。在犬心脏组织和MDCK细胞中发现,caANP32A基因仅存在1个转录本,caANP32B基因存在3个不同剪接变体:caANP32B_X1、caANP32B_X2和caANP32B_X3;caANP32E 基因具有2个不同剪接变体:caANP32E_X1和caANP32E_X2。通过分析ANP32家族蛋白对不同物种A型流感病毒RNA聚合酶活性的影响发现,caANP32A和caANP32B均能支持犬流感病毒(H3N2GD11)和马流感病毒(H3N8JL89)RNA聚合酶活性,而对禽流感病毒(H9N2ZJ12)RNA聚合酶活性支持较低。caANP32B_X2剪接变体对哺乳动物流感病毒RNA聚合酶活性的支持能力显著高于caANP32B_X1和caANP32B_X3(P<0.05);而caANP32E不支持A型流感病毒RNA聚合酶活性。【结论】本研究初步解析了caANP32家族蛋白的组织分布及序列多态性,阐明了其对不同物种A型流感病毒RNA聚合酶活性的支持作用,为解析MDCK细胞作为流感病毒分离和疫苗生产细胞系的分子机制提供了新的借鉴。  相似文献   

16.
Screening of two probiotic products for use in fermented liquid feed   总被引:1,自引:0,他引:1  
In this trial two commercial probiotic products (Bactocell® and Adjulact® Pro) were investigated in vitro for their use as microbial inoculum for the production of fermented liquid feed (FLF) for pigs. Bactocell® was applied at a dose of 9 and 10 log10 CFU/kg and Adjulact® Pro at a level of 9 log10 CFU/kg. The FLF (control and treatments) was prepared with a water to feed ratio of 4:1 and run in batch for 72 h at 30 °C. The microbial population was followed with plate countings and the lactic acid, acetic acid and ethanol concentration was determined at different time points in the FLF. After 24 h, significant differences (P < 0.05) were found between the control and the Adjulact® Pro FLF for pH (4.7 vs 4.3), lactic acid (57.9 vs 91.5 mmol/L), acetic acid (23.1 vs 6.8 mmol/L), ethanol (24.5 vs 1.1 mmol/L), coliforms (7.2 vs 4.3 log10 CFU/mL) and E. coli (6.2 vs 4.4 log10 CFU/mL). Bactocell® addition did not alter the fermentation characteristics compared to the control FLF. After 72 h no significant differences between treatments were noted, except for the yeast count which was higher in the FLF inoculated with Adjulact® Pro.  相似文献   

17.
为了解三穗鸭肌细胞增强因子(myocyte enhancer factor 2A,MEF2A)SNPs与屠宰性状的相关性,本研究以60只三穗鸭为研究对象,采用PCR-SSCP方法结合PCR产物直接测序技术对三穗鸭MEF2A基因多态性进行检测,并进行SNPs与屠宰性状各指标的相关分析。结果表明,在MEF2A基因中共发现了2个SNPs:第11外显子的g.47915G>A位点和g.47918G>A位点,g.47915G>A位点发生的G/A突变使密码子由GAA变为AAA,翻译出的氨基酸由谷氨酸变成赖氨酸,g.47918G>A位点的G/A突变引起的密码子由GAT变成AAT,翻译出的氨基酸由天冬氨酸变成天冬酰胺。SNPs与屠宰性状的关联性分析表明,g.47915G>A和g.47918G>A位点影响全净膛率。这一结果揭示了MEF2A基因的多态性对三穗鸭屠体性状具有重要的影响。  相似文献   

18.
本试验旨在研究日粮营养水平对断奶后2~6月龄陕北白绒山羊生长性能及小肠组织中与氨基酸转运吸收相关的SLC7A7、SLC3A1和SLC15A1 mRNA表达的影响。选取健康、日龄((60±1.60)d)和体重((10.73±1.03)kg)相近的雌性陕北白绒山羊羔羊36只,随机分为4组,分别饲喂4种试验日粮,其消化能和粗蛋白质水平分别为标准日粮的85%、100%、115%和130%。标准日粮营养水平参考肉羊饲养标准NY/T816-2004,依据生长阶段(10~19 kg、15~27 kg)和目标增重设置。试验期间,分别于120和180日龄称重,于180日龄,每个重复屠宰1只试验羊,采集十二指肠中上部、空肠中段、回肠末端组织样品,通过实时荧光定量PCR检测SLC7A7、SLC3A1和SLC15A1表达水平。结果表明:1)第一阶段(60~120 d)115%水平组平均日增重显著高于其他三组(P<0.05),第二阶段(121~180 d)115%水平组平均日增重显著高于85%和100%水平组(P<0.05),与130%水平组无明显差异。两阶段115%水平组羔羊干物质采食量极显著高于其他3组(P<0.01)。两阶段料重比115%水平组显著低于85%、100%水平组(P<0.05)。2)相同营养水平下,SLC7A7和SLC15A1 mRNA的表达丰度顺序均为回肠>空肠>十二指肠;3)随日粮营养水平的增加,SLC7A7、SLC3A1和SLC15A1 mRNA在小肠各段的相对表达量呈先上升后下降的趋势,且115%水平组表达量最高。115%水平组SLC7A7和SLC15A1 mRNA相对表达量显著高于其他3组(P<0.05);115%水平组SLC3A1 mRNA的相对表达量显著高于85%和130%水平组组(P<0.05)。本试验条件下,与其他营养水平组相比,115%水平组陕北白绒山羊羔羊在2~6月龄生长性能最佳,SLC7A7、SLC3A1和SLC15A1 mRNA在小肠各段的表达量最高。  相似文献   

19.
To understand the relationship between single nucleotide polymorphism sites (SNPs) of myocyte enhancer factor 2A (MEF2A) gene and slaughter traits in Sansui duck, a total of 60 individuals of Sansui ducks were selected to investigate in this study, direct sequencing of PCR and PCR-SSCP methods were used on single nucleotide polymorphisms of MEF2A gene, and genetic effects of its on slaughter traits were analyzed.The results showed that two SNPs which include g.47915G>A and g.47918G>A of exon 11 were found in MEF2A gene, and the G/A mutation in the g.47915G>A SNP resulted in the change of codon from GAA to AAA, and the coding amino acid from Glu to Lys, and the G/A mutation in the g.47918G>A SNP resulted in the change of codon from GAT to AAT, and the coding amino acid from Asp to Asn.The result of association of SNPs with slaughter traits showed various results were as follows:g.47915G>A and g.47918G>A had affected the eviscerated percentage.This result revealed that the polymorphism of MEF2A gene had basilic influence on slaughter traits.  相似文献   

20.
We report the identification and fine mapping of QTL for birth weight (BWT), preweaning ADG (PWADG), and postweaning ADG on feed (ADGF) in a commercial line of Bos taurus using an identical-by-descent haplotype sharing method. One hundred seventy-six calves of 12 bulls (9 to 30 male calves from each sire) of the Beefbooster, Inc., M1 line were typed using 71 genetic markers from bovine chromosomes (BTA) 2, 6, 14, 19, 21, and 23 (8 to 16 markers from each chromosome). Sixteen haplotypes were found to have significant (P <0.05) associations with BWT at the comparison-wise threshold. The 16 haplotypes span 13 chromosomal regions, two on BTA 2 (9.1 to 22.5 cM and 95.0 to 100.3 cM), three on BTA 6 (8.2 to 11.8 cM, 35.5 to 49.7 cM, and 83.0 to 86.2 cM), three on BTA 14 (26.0 to 26.7 cM, 36.2 to 46.2 cM, and 52.0 to 67.7 cM), one on BTA 19 (52.0 to 52.7 cM), two on BTA 21 (9.9 to 20.4 cM and 28.2 to 46.1 cM), and two on BTA 23 (23.9 to 36.0 cM and 45.1 to 50.9 cM). Thirteen haplotypes spanning seven chromosomal regions significantly affected (P <0.05) PWADG at the comparison-wise threshold. The seven chromosomal regions include two regions on BTA 6 (11.8 to 44.2 cM and 83.0 to 86.2 cM), one on BTA 14 (26.7 to 50.8 cM), one on BTA 19 (4.8 to 15.9 cM), one on BTA 21 (9.9 to 20.4 cM), and two on BTA 23 (17.3 to 36.0 cM and 45.1 to 50.9 cM). For ADGF, 11 haplotypes were identified to have significant associations (P <0.05) at the comparison-wise threshold. The 11 haplotypes represented eight chromosomal regions, one on BTA 2 (9.1 to 22.5 cM), two on BTA 6 (49.7 to 50.1 cM and 59.6 to 63.6 cM), two on BTA 14 (17.0 to 24.0 cM and 36.2 to 46.2 cM), two on BTA 19 (52.0 to 52.7 cM and 65.1 to 65.7 cM), and one on BTA 21 (46.1 to 53.1 cM). The QTL regions identified and fine mapped in this study will provide a reference for future positional candidate gene research and marker-assisted selection of various growth traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号