首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
Plasma insulin (INS), thyroxin (T4), glucose (GLU), non‐esterified fatty acid (NEFA), blood urea nitrogen (BUN), rectal temperature (RT) and eating behavior were evaluated in Japanese Shorthorn cattle under varying external environments and management techniques. Serial blood collection and assessments of RT and eating behavior were performed over 48 h in the spring, summer, autumn and winter in four female cattle reared under either free‐stall and ad libitum feeding (FA) conditions or tie‐stall and restricted feeding (TR) conditions. Cycle patterns for each parameter were examined using spectral analysis, and correlations between parameters were investigated using cross‐spectral analysis. Rhythms for all parameters, except eating behavior and T4, did not differ significantly among the varied external environments and between management techniques, although seasonal differences in the concentration or value of parameters were observed. An approximate 3‐ or 4‐h rhythm cycle detected in T4, GLU, NEFA, BUN, and RT might be the common metabolic rhythm. Under both conditions, the metabolite levels showed strong correlations with eating behavior. Moreover, GLU positively correlated with INS at lag time of 0 h, as did eating behavior and RT.  相似文献   

2.
The purpose of the present study was to investigate the secretion cycles of melatonin (MEL) in cattle over the course of four seasons. Four female Japanese Shorthorn cattle under free‐stall and ad libitum feeding conditions were used, and plasma MEL concentrations were measured over a 48 h period at 1 h intervals. The time‐series data were analyzed by spectral analysis, and the cycle hour was determined. Data indicated that the secretion cycle for MEL was approximately 23.5 h for all four seasons. The area under the curve of MEL from start to end of experiment for 48 h did not differ significantly among the four seasons. However, the duration of high MEL secretion which defined the duration time of the values were more than 10 pg/mL and differed significantly among the four seasons. In conclusion, this study, which was the first to use spectral analysis to evaluate the cyclic rhythm of MEL in cattle, revealed that MEL secretion cycles did not differ among the seasons. These findings are inconsistent with previous study results in that previous reports suggested that the MEL secretion cycle differed under different lighting conditions.  相似文献   

3.
To clarify endocrine responses to psychological stressors in cattle, the effects of isolation from familiar peers on plasma prolactin (PRL) and cortisol (CORT) concentrations, and the effect of 3,4‐dihydroxy‐L‐phenylalanine (L‐DOPA), a precursor of dopamine (DA), on stress‐induced PRL secretion were determined in Holstein steers. First, the potency of peripheral L‐DOPA administration on attenuation of central DA levels was confirmed. Cerebrospinal fluid (CSF) collected from a chronic cannula in the third ventricle and plasma were sampled 1 h before and 3 h after intravenous injection of L‐DOPA (100 mg/head). DA concentrations in CSF increased just after L‐DOPA injection with subsequent decrease in PRL secretion. Injection of L‐DOPA increased CORT secretion. Second, one experimental steer was isolated in its stall by removing its peers for 2 h with or without‐ pre‐injection of L‐DOPA. The concentration of PRL was elevated by isolation treatment, whereas the effect of isolation on CORT concentration could not be detected. The increase in PRL concentration after isolation was abolished by pre‐injection of L‐DOPA. These results suggest that PRL responds to isolation and that DA neurons in the central nervous system may regulate stress‐induced PRL secretion in steers.  相似文献   

4.
Some evidence suggests that there might be a species difference in the effect of intracerebroventricularly administered (ICV) prolactin‐releasing peptide (PrRP) between rodents and sheep. We compared the levels of cortisol (CORT) and prolactin (PRL), rectal temperature (RT) and behavioral responses to ICV bovine PrRP (bPrRP) in steers. ICV bPrRP (0.2, 2 and 20 nmol/200 µL) tended to evoke a dose‐related increase in CORT concentrations and 0.2 nmol of bPrRP induced transient increase in PRL concentrations. A significant time–treatment interaction was observed for the percent change of CORT (P < 0.05) and PRL (P < 0.05) from pre‐injection value. The time–treatment interaction for changes in RT was not significant (P = 0.50). There tended to be a difference among the four treatments in terms of maximum change in RT from the pre‐injection value between 0 and 90 min (P < 0.1). Stress‐related behavioral signs were not observed in the present experiment. These findings indicate that ICV bPrRP increased CORT and PRL levels, suggesting that central PrRP might participate in controlling the hypothalamo‐pituitary‐adrenal axis and PRL release in cattle, unlike sheep. In contrast, central PrRP is unlikely to be involved in controlling the behavior of this species because ICV bPrRP did not induce marked changes in their behavior.  相似文献   

5.
The aim of the present study was to clarify the effect of photoperiod on nighttime secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8 h or 16 h dark photoperiod, and secretory patterns of GH for 8 h in the dark period were examined with the profile of prolactin (PRL) secretion. GH was secreted in a pulsatile manner in the dark period. There were no significant differences in pulse frequency between the 8‐ and 16‐h dark photoperiods; however, pulse amplitude tended to be greater in the group with the 16‐h dark photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the same photoperiod (P < 0.05). PRL secretion increased quickly after lights off under both photoperiods. The PRL‐releasing responses were weaker in the 8‐h than 16‐h dark photoperiod. The secretory response to photoperiod was more obvious for PRL than GH. The present results show that a long dark photoperiod enhances the nighttime secretion of GH in female goats, although the response is not as obvious as that for PRL.  相似文献   

6.
The rhythmic locomotor behavior of flies and mice provides a phenotype for the identification of clock genes, and the underlying molecular mechanism is well studied. However, interestingly, when examining locomotor rhythm in the wild, several key laboratory‐based assumptions on circadian behavior are not supported in natural conditions. The rooster crowing ‘cock‐a‐doodle‐doo’ is a symbol of the break of dawn in many countries. Previously, we used domestic inbred roosters and showed that the timing of roosters' crowing is regulated by the circadian clock under laboratory conditions. However, it is still unknown whether the regulation of crowing by circadian clock is observed under natural conditions. Therefore, here we used red jungle fowls and first confirmed that similar crowing rhythms with domesticated chickens are observed in red jungle fowls under the laboratory conditions. Red jungle fowls show predawn crowing before light onset under 12:12 light : dim light conditions and the free‐running rhythm of crowing under total dim light conditions. We next examined the crowing rhythms under semi‐wild conditions. Although the crowing of red jungle fowls changed seasonally under semi‐wild conditions, predawn crowing was observed before sunrise in all seasons. This evidence suggests that seasonally changed crowing of red jungle fowls is under the control of a circadian clock.  相似文献   

7.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) release in goats. The PRL‐releasing response to an intravenous (i.v.) injection of SAL was examined after treatment with augmentation of central DA using carbidopa (carbi) and L‐dopa in male goats under 8‐h (8 h light, 16 h dark) or 16‐h (16 h light, 8 h dark) photoperiod conditions. The carbi and L‐dopa treatments reduced basal PRL concentrations in the 16‐h photoperiod group (P < 0.05), while a reduction was not observed in the 8‐h photoperiod group. The mean basal plasma PRL concentration in the control group for the 8‐h photoperiod was lower than that for the 16‐h photoperiod (P < 0.05). SAL significantly stimulated the release of PRL promptly after the injection in both the 8‐ and 16‐h photoperiod groups (P < 0.05). PRL‐releasing responses for the 16‐h photoperiod were greater than those for the 8‐h photoperiod (P < 0.05). The carbi and L‐dopa treatments blunted SAL‐induced PRL release in both the 8‐ and 16‐h photoperiods (P < 0.05). These results indicate that hypothalamic DA blunts the SAL‐induced release of PRL in male goats, regardless of the photoperiod, which suggests that both SAL and DA are involved in regulating the secretion of PRL in goats.  相似文献   

8.
The secretion of prolactin (PRL) is under the dominant and tonic inhibitory control of dopamine (DA); however, we have recently found that salsolinol (SAL), an endogenous DA‐derived compound, strongly stimulated the release of PRL in ruminants. The aim of the present study was to clarify the inhibitory effect of DA on the SAL‐induced release of PRL in ruminants. The experiments were performed from late June to early July. Male goats were given a single intravenous (i.v.) injection of SAL (5 mg/kg body weight (BW)), a DA receptor antagonist (sulpiride, 0.1 mg/kg BW), or thyrotropin‐releasing hormone (TRH, 1 µg/kg BW) before and after treatment with a DA receptor agonist (bromocriptine), and the effect of DA on SAL‐induced PRL release was compared to that on sulpiride‐ or TRH‐induced release. Bromocriptine completely inhibited the SAL‐induced release of PRL (P < 0.05), and the area under the response curve (AUC) for a 120‐min period after the treatment with bromocriptine was 1/28 of that for before the treatment (P < 0.05). Bromocriptine also completely inhibited the sulpiride‐induced release (P < 0.05). The AUC post‐treatment was 1/17 that of pre‐treatment with bromocriptine (P < 0.05). Bromocriptine also inhibited the TRH‐induced release (P < 0.05), though not completely. The AUC post‐treatment was 1/3.8 that of pre‐treatment (P < 0.05). These results indicate that DA inhibits the SAL‐induced release of PRL in male goats, and suggest that SAL and DA are involved in regulating the secretion of PRL. They also suggest that in terms of the regulatory process for the secretion of PRL, SAL resembles sulpiride but differs from TRH.  相似文献   

9.
The effects of l ‐DOPA, a precursor of dopamine (DA), and sulpiride, a D2‐type DA receptor blocker, on growth hormone (GH) and prolactin (PRL) secretion were investigated in steers. Eight Holstein steers (212.8 ± 7.8 kg body weight) were used. Lighting conditions were 12:12 L:D (lights on: 06.00–18.00 hours). Blood samplings were performed during the daytime (11.00–15.00 hours) and nighttime (23.00–03.00 hours). Intravenous injections of drugs or saline were performed at 12.00 hour for the daytime and 00.00 hour for the nighttime, respectively. Plasma GH and PRL concentrations were determined by radioimmunoassay. l ‐DOPA did not alter the GH secretion when it was injected at 12.00 hour (spontaneous GH level at its peak). On the other hand, l ‐DOPA increased GH secretion at 00.00 hour (GH level at its trough). Injection of sulpiride suppressed GH secretion at 12.00 hour but did not affect GH levels at 00.00 hour. l ‐DOPA inhibited and sulpiride stimulated PRL release during both periods. These results suggest that dopaminergic neurons have stimulatory action on GH secretion and inhibitory action on PRL secretion in cattle. In addition, injection time should be considered to evaluate the exact effects on GH secretion due to its ultradian rhythm of GH secretion in cattle.  相似文献   

10.
The combined antibacterial effects of tilmicosin (TIL) and florfenicol (FF) against Actinobacillus pleuropneumoniae (APP) (n = 2), Streptococcus suis (S. suis) (n = 2), and Haemophilus parasuis (HPS) (n = 2) were evaluated by chekerboard test and time‐kill assays. The pharmacokinetics (PKs) of TIL‐ and FF‐loaded hydrogenated castor oil (HCO)‐solid lipid nanoparticles (SLN) were performed in healthy pigs. The results indicated that TIL and FF showed synergistic or additive antibacterial activities against APP, S. suis and HPS with the fractional inhibitory concentration (FIC) ranging from 0.375 to 0.75. The time‐kill assays showed that 1/2 minimum inhibitory concentration (MIC) TIL combined with 1/2 MIC FF had a stronger ability to inhibit the growth of APP, S. suis, and HPS than 1 MIC TIL or 1 MIC FF, respectively. After oral administration, plasma TIL and FF concentrations could maintain about 0.1 μg/ml for 192 and 176 hr. The SLN prolonged the last time point with detectable concentrations (Tlast), area under the concentration–time curve (AUC0‐t), elimination half‐life (T½ke), and mean residence time (MRT) by 3.1, 5.6, 12.7, 3.4‐fold of the active pharmaceutical ingredient (API) of TIL and 11.8, 16.5, 18.1, 12.1‐fold of the API of FF, respectively. This study suggests that the TIL‐FF‐SLN could be a useful oral formulation for the treatment of APP, S. suis, and HPS infection in pigs.  相似文献   

11.
The decline in melatonin secretion with age seems to be one of the major reasons for increased sleep disruption in older animals. Previously, we showed that the administration with melatonin or its precursor, tryptophan, improved activity/rest rhythms in aged individuals. Here, it was evaluated the effect of a 10‐day consumption of a Jerte Valley cherry‐based nutraceutical product (patent no. ES2342141B1), which contains high levels of tryptophan, serotonin and melatonin, on the activity/rest rhythms of young and old rats (Rattus norvegicus) and ringdoves (Streptopelia risoria) as representatives of animals with nocturnal and diurnal habits, respectively, and its possible relationship with the serum levels of melatonin and glucose. Total diurnal and nocturnal activity pulses were logged at control, during, and up to 3 days after the treatment. Melatonin and glucose were measured with ELISA and testing kits respectively. In both young and old rats, the intake of the cherry nutraceutical decreased diurnal activity, whereas nocturnal activity increased. The opposite effect was observed for ringdoves. The treatment increased the circulating levels of melatonin in both species and restored the amplitude of the activity rhythm in the old animals to that of the non‐treated young groups. The consumption of a Jerte Valley cherry‐based nutraceutical product may help to counteract the impaired activity/rest rhythm found in aged animals.  相似文献   

12.
Thirty-five ovariectomized pony mares were used to study the relationships among luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) concentrations in blood (secretion), in pituitary (storage) and in blood after secretagogue administration, as well as the content of gonadotropin releasing hormone (GnRH) in hypothalamic areas, under various conditions of steroidal and nonsteroidal treatment. Five mares each were treated daily for 21 d with vegetable shortening (controls), testosterone (T; 150 micrograms/kg of body weight, BW), dihydrotestosterone (DHT; 150 micrograms/kg BW), estradiol (E2; 35 micrograms/kg BW), progesterone (P4; 500 micrograms/kg BW), dexamethasone (DEX; 125 micrograms/kg BW) or charcoal-stripped equine follicular fluid (FF; 10 ml). Secretagogue injections (GnRH and thyrotropin releasing hormone, TRH, at 1 and 4 micrograms/kg of BW, respectively) were given one d prior to treatment and again after 15 d of treatment. Relative to controls, treatment with T, DHT and DEX reduced (P less than .05) LH secretion, storage and response to exogenous GnRH, whereas treatment with E2 increased (P less than .05) these same characteristics. Treatment with P4 reduced (P less than .05) only LH secretion. Treatment with T, DHT, E2 and DEX reduced (P less than .05) FSH secretion, whereas treatment with P4 increased (P less than .05) it and FF had no effect (P greater than .1). All treatments increased (P less than .05) FSH storage, whereas only treatment with T and DHT increased (P less than .05) the FSH response to exogenous GnRH. Other than a brief increase (P less than .05) in PRL secretion in mares treated with E2, secretion of PRL did not differ (P greater than .1) among groups. Only treatment with E2 increased (P less than .01) PRL storage, yet treatment with T or DHT (but not E2) increased (P less than .05) the PRL response to exogenous TRH. Content of GnRH in the body and pre-optic area of the hypothalamus was not affected (P greater than .1) by treatment, whereas treatment with T, E2 and DEX increased (P less than .1) GnRH content in the median eminence. For LH, secretion, storage and response to exogenous GnRH were all highly correlated (r greater than or equal to .77; P less than .01). For FSH, only storage and response to exogenous GnRH were related (r = .62; P less than .01). PRL characteristics were not significantly related to one another. Moreover, the amount of GnRH in the median eminence was not related (P greater than .1) to any LH or FSH characteristic.  相似文献   

13.
The aims of this study were to examine whether mouflons exposed to constant long and short day photoperiods are able to exhibit an annual cycle of hair growth and moult, and prolactin (PRL) secretion. Mouflon ewes were assigned to three groups of treatment. Ewes were maintained, either under natural photoperiod (control, n=9), or received a series of subcutaneous melatonin implants from December to April (n=8), or were exposed to a constant long day photoperiod (16-h light:8-h dark; 16L:8D) during 18 months (n=7). Blood was collected weekly to determine PRL concentrations, and hair samples were clipped weekly from the base of the neck to measure the length of predominant hair. Under constant long days and with melatonin implants, mouflons expressed an annual rhythm of PRL secretion, even though these treatments modified the times of rise or falling of PRL concentrations throughout the year. Hair growth initiation was almost coincident with the summer solstice in both control and melatonin-implanted mouflons but occurred two months earlier in long day hold mouflons (P<0.001). Long day hold mouflons had a lower hair growth rate than control and melatonin-implanted mouflons (P<0.001), and at the end of the experiment, a shorter hair length (3.4±0.24 cm; P<0.01) than control (4.3±0.17 cm), and melatonin-implanted mouflons (4.2±0.12 cm). Our data support the conclusion that in mouflon, an endogenous circannual rhythm of PRL secretion exists, and that the seasonal cycle of hair growth and moult appears to depend, at least in part, on circulating levels of PRL.  相似文献   

14.
The aim of the present study was to clarify the effect of photoperiod on secretory patterns of growth hormone (GH) in male goats. Adult male goats were kept at 20°C with an 8‐h or 16‐h light photoperiod, and secretory patterns of GH secretion were compared. In addition, plasma profiles of prolactin (PRL), insulin‐like growth factor‐I (IGF‐I) and testosterone (T) were also examined to characterize GH secretion. GH was secreted in a pulsatile manner. There was no significant difference in pulse frequency between the 8‐h and 16‐h photoperiods. However, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH releasing hormone was greater in the 16‐h than 8‐h photoperiod (P < 0.05). Plasma PRL and IGF‐I levels were higher in the 16‐h than 8‐h photoperiod (P < 0.05). In contrast, plasma T levels were lower in the 16‐h photoperiod (P < 0.05). These results show that a long light photoperiod enhances the secretion of GH as well as PRL and IGF‐I, but reduces plasma T concentrations in male goats.  相似文献   

15.
The liver is an important organ that contributes to milk production in dairy cows. The aim of this study was to examine whether liver conditions affect the characteristics of blood plasma and follicular fluid (FF) and whether supplementing in vitro maturation medium with FF from either cows with damaged livers (DL) or those with healthy livers (HL) affects oocyte developmental competence. Biochemical characteristics of FF were significantly correlated with those in plasma. As such, the characteristics of both plasma and FF were similarly affected by liver conditions in that the concentrations of total protein and inorganic phosphorus were higher for the DL cow group than for the HL cow group, whereas the concentrations of albumin, lactate dehydrogenase and calcium were lower for DL cows than for HL cows. In addition, supplementing the medium with DL‐FF retarded the progression of the nuclear maturation of oocytes collected from the HL cows. On culturing oocytes in maturation medium containing HL‐FF, DL‐FF or foetal calf serum, the highest developmental rate to the blastocyst stage was observed in the HL‐FF group, while the lowest developmental ratio was observed in the DL‐FF group. The growth factor array of the FFs revealed that 10 growth factors were significantly downregulated in the DL‐FF compared with those in HL‐FF. In conclusion, the characteristics of plasma and FF are affected by liver conditions in a similar way. Concentrations of several growth factors were low in DL‐FF, as was the ability of DL‐FF to support oocyte maturation compared with that of HL‐FF.  相似文献   

16.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

17.
The aim of the present study was to clarify the relation between salsolinol (SAL)‐induced prolactin (PRL) release and photoperiod in goats. A single intravenous (i.v.) injection of SAL was given to adult female goats under short (8 h light, 16 h dark) or long (16 h light, 8 h dark) photoperiod conditions at two different ambient temperatures (20°C or 5°C), and the PRL‐releasing response to SAL was compared to that of thyrotropin‐releasing hormone (TRH) or a dopamine (DA) receptor antagonist, sulpiride. SAL, as well as TRH or sulpiride, stimulated the release of PRL promptly after each injection in both 8‐ and 16‐h daily photoperiods at 20°C (P < 0.05). The area under the response curve (AUC) of PRL for the 60‐min period after injections of saline (controls), SAL, TRH and sulpiride in the 16‐h daily photoperiod group was greater than each corresponding value in the 8‐h daily photoperiod group (P < 0.05). There were no significant differences in the AUC of PRL among the values produced after the injection of SAL, TRH and sulpiride in 16‐h daily photoperiod group; however, the values produced after the injection of TRH were smallest among the three in the 8‐h daily photoperiod group (P < 0.05). The PRL‐releasing responses to SAL, TRH and sulpiride under a short and long photoperiod condition at 5°C resembled those at 20°C. These results show that a long photoperiod highly enhances the PRL‐releasing response to SAL as well as TRH or sulpiride in either medium or low ambient temperature in goats.  相似文献   

18.
This study was conducted to investigate the possibility of suppression of stress‐induced cortisol (CORT) secretion by tryptophan (TRP) administration and to better understand its regulatory mechanisms by using a noradrenaline (NA) injection into the third ventricle (3V) as a stress model in cattle. A total of 25 Holstein steers with a cannula in the 3V were used. First, the increase in CORT secretion was observed following a NA injection into the 3V in a dose‐dependent manner, verifying the appropriateness of this treatment as a stress model of CORT secretion (Experiment 1). The effect of prior‐administration of TRP into peripheral blood with a dose that has been demonstrated to increase brain 5‐hydroxytryptamine levels on the elevation of plasma CORT induced by NA or corticotropin‐releasing hormone (CRH) was then examined (Experiment 2). The prior administration of TRP suppressed NA‐induced, but not CRH‐induced, CORT elevation. These results suggest that an increase in TRP absorption into peripheral blood could suppress the stress‐induced CORT secretion in cattle via the attenuation of the stimulatory effect of NA on the hypothalamic CRH release.  相似文献   

19.
To effectively control bovine mastitis, tilmicosin (TIL)‐ and florfenicol (FF)‐loaded solid lipid nanoparticles (SLN) with hydrogenated castor oil (HCO) were prepared by a hot homogenization and ultrasonication method. In vitro antibacterial activity, properties, and pharmacokinetics of the TIL‐FF‐SLN were studied. The results demonstrated that TIL and FF had a synergistic or additive antibacterial activity against Streptococcus dysgalactiae, Streptococcus uberis, and Streptococcus agalactiae. The size, polydispersity index, and zeta potential of nanoparticles were 289.1 ± 13.7 nm, 0.31 ± 0.05, and ?26.7 ± 1.3 mV, respectively. The encapsulation efficiencies for TIL and FF were 62.3 ± 5.9% and 85.1 ± 5.2%, and the loading capacities for TIL and FF were 8.2 ± 0.6% and 3.3 ± 0.2%, respectively. The TIL‐FF‐SLN showed no irritation in the injection site and sustained release in vitro. After medication, TIL and FF could maintain about 0.1 μg/mL for 122 and 6 h. Compared to the control solution, the SLN increased the area under the concentration–time curve (AUC0‐t), elimination half‐life (T½ke), and mean residence time (MRT) of TIL by 33.09‐, 23.29‐, and 37.53‐fold, and 1.69‐, 5.00‐, and 3.83‐fold for FF, respectively. These results of this exploratory study suggest that the HCO‐SLN could be a useful system for the delivery of TIL and FF for bovine mastitis therapy.  相似文献   

20.
To provide new insights into the neural mechanisms of physiological and behavioral responses to stressors in sheep, acute changes in endocrine, autonomic and behavioral functions following 30 min infusions of ovine‐corticotropin‐releasing hormone (oCRH; 0, 0.5, 5 or 50 µg/0.5 mL of artificial cerebrospinal fluid/30 min) into the third ventricle of sheep (n = 7–8) were examined. Serial blood samples were collected through indwelling jugular catheters to determine plasma cortisol concentrations (CORT). Heart rate (HR) and rectal temperature (RT) were obtained via telemetry systems. The behaviors of the animal were monitored simultaneously. Intracerebroventricular infusions of CRH dose‐dependently induced an increase in CORT; there was a time–treatment interaction in CORT (P < 0.001). There was not a time–treatment interaction either in HR (P = 0.29) or in RT (P = 0.28). That RT showed a tendency to decrease with higher doses of CRH in sheep was in contradiction to previous reports in rats and pigs. As to changes in behavioral function, only the induction of bleating was marked. These results suggest that in physiological and behavioral responses of sheep to stressors, CRH regulates the increase in CORT and the induction of bleating. However, CRH might have little function in sympathetic nervous activation during physiological responses to stressors in sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号