首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于试验场实测应变的车辆下摆臂疲劳寿命分   总被引:5,自引:0,他引:5  
在海南汽车试验场强化路面环境下对某轿车下摆臂应变模拟控制点的应变进行测定,得到其应变时间历程,并进行了频谱分析.讨论了在动态环境下准静态方法的使用条件.结合有限元静力分析结果通过准静态法获得危险点的应力时间历程,利用名义应力法对下摆臂疲劳寿命进行了计算和分析.在此基础上,研究了应变模拟控制点的选取、平均应力修正算法对计算结果的影响,所得结论有助于应变模拟控制点的合理选取,并对提高疲劳寿命估算的准确度有参考价值.  相似文献   

2.
齿轮弯曲疲劳寿命有限元计算方法研究   总被引:5,自引:0,他引:5  
以材料弯曲疲劳特性为基础,采用有限元技术对齿轮的齿根应力进行分析,运用多轴疲劳设计准则对齿轮的疲劳寿命进行了计算。这一方法克服了传统的齿轮疲劳寿命计算中齿轮材料疲劳特性数据不足,应力计算不准的缺点。将计算结果与试验数据进行了对比分析,疲劳寿命计算值在试验值的0.3倍至3倍以内。  相似文献   

3.
叙述了有限元技术在疲劳寿命预测中的应用和一般的分析过程;着重介绍了疲劳载荷历程的合成规则和表面节点应力状态的判断方法;归纳评述了常用的多轴疲劳损伤模型;针对结构中普遍存在的焊缝焊点给出了具体的疲劳寿命分析方法;最后给出驱动桥壳疲劳寿命分析实例,计算结果和试验数据基本一致,说明基于有限元法的疲劳寿命预测是切实可行的,可以降低成本,缩短研发周期。  相似文献   

4.
基于弹塑性有限元法的拖拉机车轮疲劳寿命预测研究   总被引:1,自引:0,他引:1  
基于ANSYS有限元软件,以侧向负载疲劳试验和扭转疲劳试验为依据,通过W15Lx34型可调偏距式拖拉机车轮结构分析,阐明拖拉机车轮弹塑性有限元分析与局部应力应变法预测寿命的过程方法。研究表明,车轮安装偏距对疲劳寿命有负相关性,疲劳寿命随偏距增大而缩短。在常用偏距下,示例车轮疲劳寿命安全系数偏低。给出两种改进方案,并且综合四种偏距按疲劳积累理论计算疲劳寿命,结果显示:两种改进方案的常用偏距和综合偏距疲劳寿命有明显提升。  相似文献   

5.
基于高性能计算的曲轴系统动力学与疲劳仿真   总被引:1,自引:0,他引:1  
针对曲轴的动力学仿真和疲劳寿命计算,建立了一种曲轴系统大规模直接计算模型,借助高性能计算(HPC)技术并利用显式有限元算法实现了动力学模型的直接求解,结果详细描述了包括曲轴强度和变形在内的曲轴系统动力学特性。采用全寿命分析方法直接对动力学仿真结果进行曲轴寿命及安全系数的计算,基于应力-时间历程等动态结果进行的疲劳分析结果显得更为真实。计算过程和结果证明了曲轴系统直接动力学及疲劳仿真分析方法的可行性和有效性。  相似文献   

6.
结合镁合金车轮的疲劳类型为机械高周变幅疲劳的特点,提出采用安全寿命设计方法分析镁合金车轮疲劳寿命的研究思路,建立了与车轮弯曲疲劳试验工况相对应的镁合金车轮有限元分析模型;对汽车车轮疲劳强度进行计算,在此基础上采用名义应力法对疲劳寿命进行了预测并进行优化设计。结果表明,车轮的质量减轻了22%,疲劳寿命仍能满足设计要求。  相似文献   

7.
基于功率密度的大功率拖拉机变速箱壳体疲劳分析   总被引:1,自引:0,他引:1  
引入功率密度的概念,提出功率密度与时频分析相融合的疲劳寿命预测方法,研究了应力幅值和载荷频率2个因素对大功率拖拉机关键零部件疲劳寿命的影响。以某型号88 k W拖拉机为研究对象,在实际调研、用户反馈和有限元分析的基础上,确定变速箱壳体疲劳损伤危险点位置,搭建动态应力测试系统,采集拖拉机不同作业工况下的应力-时间历程。基于实测载荷,利用功率密度与时频分析相融合的疲劳寿命分析方法对拖拉机变速箱壳体的疲劳寿命进行预测,得到危险点的疲劳寿命为24 001 h,与基于Miner损伤理论和名义应力法分析得到的疲劳寿命(35 676 h)相比较,更接近实际工作寿命。本研究可为农机装备关键零部件的疲劳寿命预测提供更符合实际的分析方法。  相似文献   

8.
通过对联合收割机进行田间电测,获得了逐稿器曲轴的随机弯、扭载荷时间历程;通过载荷谱统计分析与处理,编制了多级疲劳寿命估算谱。分别用名义应力法和局部应力应变法估算曲轴的疲劳寿命,并进行了模拟疲劳试验验证。试验结果表明:名义应力法较局部应力应变法对载荷变化敏感;当实际结构所受载荷接近材料屈服极限时,两种方法估算结果相近。  相似文献   

9.
基于动态弯曲疲劳试验的汽车车轮有限元分析   总被引:2,自引:0,他引:2  
针对车轮动态弯曲疲劳试验建立了汽车车轮静态加载有限元模型。它可以反映出车轮在静态加载条件下的高应力区域及其Von M ises应力值。对车轮进行静态加载试验结果与有限元计算结果吻合得较好,验证了有限元方法的有效性。通过与动态弯曲疲劳试验的比较,验证了静态试验中的应力集中区域即为疲劳试验中车轮开裂的区域。通过改进车轮结构设计来降低应力集中区域的应力值,可以有效提高车轮寿命。静态有限元分析对于进行这样的改进设计具有重要的指导作用。  相似文献   

10.
朱涛  高峰 《农业机械学报》2006,37(9):166-170
通过在叶片危险部位粘贴应变片进行数据采集以获取其在当前运行工况下的应力时间历程,结合疲劳理论来预估其剩余工作寿命是工程中有效的疲劳问题研究方法。描述了数据采集过程中常出现的干扰因素,并对因此而产生的异常信号的识别和处理技术进行了研究。基于处理后的有效实测应变信号,运用名义应力法对该工况下的叶片剩余工作寿命进行了评估计算,获得了较为可靠的结果。并对影响其疲劳寿命的几种关键因素进行了敏度分析。  相似文献   

11.
运用基于有限元的疲劳寿命分析方法对前横梁疲劳寿命进行预测,模拟前横梁试验条件下的疲劳载荷,借助疲劳寿命分析软件(MSC-Fatigue)估算出前横梁各部分的疲劳损伤情况。预测前横梁的寿命,并通过计算结果与试验结果的对比与分析,验证了有限元计算模型的正确性,从而说明通过有限元方法来对结构零件进行疲劳寿命预测是可行的,也是很有必要的,从而大大推进产品的开发进度。  相似文献   

12.
在某轿车白车身有限元模型基础上进行了进一步的分析,在Adams中建立了刚柔耦合的多体动力学模型,然后通过多体动力学分析,模拟车辆在B级路面上的行驶过程,得到了各连接位置的受力、柔体车身应力分布情况及车身模态参与因子DAC文件等时间历程数据。这些时间历程数据可用于评价车身悬架件是否超出其承载能力,车身应力是否有应力集中区域。模态分析的应力结果与DAC文件还可用于计算车身疲劳寿命。  相似文献   

13.
为了判断再制造曲轴是否可以满足一个使用周期,采用全寿命名义应力法对剩余疲劳寿命进行研究。通过ADAMS的ENGINE模块仿真曲轴工作循环载荷历程,用Solid Works建立曲轴单拐模型,Hyper Works软件划分网格并进行有限元分析,找出曲轴危险部位及应力分布。利用Miner疲劳损伤理论,在n Code Design Life软件中分析曲轴疲劳寿命,全寿命减去当量寿命得到剩余疲劳寿命。再制造曲轴考虑不同厚度涂层对疲劳寿命的影响,剩余疲劳寿命需要乘以研究得到的疲劳修正系数,这样使得研究结果更加接近曲轴真实剩余寿命。  相似文献   

14.
本文根据应力—强度干涉模型的基本原理,推导并建立起对构件(材料)疲劳寿命进行可靠性分析的计算公式,并将该公式的应用过程编制成计算机程序。构件上由随机载荷引起的应力分布是由实测的载荷—时间历程经雨流计数、统计分析后得到的。采用二维随机变量的概率密度函数来描述,以便使交变载荷的均值和幅值的变化特征都得到充分的反映。构件的疲劳强度分布是由材料疲劳强度试验的结果经统计处理后,用两条拟合曲线来描述的。一条是中值S-N曲线,它给定了强度分布的基本形态:另一条是描述试验结果分散程度的标准差随应力变化的关系曲线,它给定了疲劳强度的分布范围。作者对7C-503型拖车车架进行了室内快速模拟疲劳试验,以验证本文的计算结果,以及本文建立的分析构件(材料)疲劳寿命可靠性的计算公式和计算程序的正确、可行性。  相似文献   

15.
基于ANSYS软件建立某小型涡喷发动机燃烧室1/10有限元模型,利用该模型计算了燃烧室在该发动机额定转速下的热应力分布;以发动机“0-工作-0”循环为燃烧室的温度计算条件,综合热疲劳和高温疲劳影响,分别计算了热疲劳循环次数和时效寿命。提出的燃烧室疲劳寿命工程估算方法,不用开展材料疲劳参数的测试试验,节省了费用和时间,可为其它热端疲劳部件的寿命分析提供借鉴。  相似文献   

16.
铝合金车轮动态弯曲疲劳寿命预测   总被引:1,自引:0,他引:1  
结合有限元法和疲劳理论对22×8.5JJ车轮进行了动态弯曲疲劳分析,得到了试验载荷下车轮的疲劳寿命分布.应用ANSYS软件建立了疲劳试验的有限元模型,并考虑螺栓预紧和多个面接触对计算结果的影响;采用24个载荷的序列模拟车轮一个载荷循环过程的受力状态.采用临界平面准则分析了疲劳寿命.分析结果表明车轮的疲劳破坏主要集中在轮辐根部的连接部位,与试验结果吻合.应用该分析方法能降低设计成本,缩短设计周期.  相似文献   

17.
蒋亚波  白杨  魏江波  程乾  井仪 《南方农机》2023,(16):30-33+77
【目的】为了尽可能地使轮辋、轮辐、螺栓座及螺栓等实现强度设计,避免某零件强度过剩,降低产品的制造成本。【方法】研究小组利用有限元分析技术,基于Pro/E 5.0自带的热力分析模块Mechanic,以车轮扭转疲劳、侧向负载疲劳试验方法为依据,通过对某品牌70马力拖拉机后驱动车轮(W12×30)进行有限元分析,计算车轮的应力分布、变形量和疲劳寿命。【结果】1)对车轮加载扭矩M1后,轮辐、支架与轮辋焊道处、支架的最大静应力分别为135 MPa、221 MPa、190 MPa,轮辐的最大位移量约为0.13 mm,车轮最低疲劳寿命约105.3。2)对车轮加载弯矩M2后,轮辐螺栓孔周围区域应力较大,部分区域的应力已经超过348 MPa;支架和轮辋焊道处的应力大部分在285 MPa以下,只有个别位置的应力稍微超过材料的屈服极限;支架折弯处的最大应力约为169 MPa;轮辐的最大位移量约为0.846 mm;车轮螺栓孔处的疲劳寿命为103.7~104.6。【结论】该型号车轮在侧向负载作用下疲劳寿...  相似文献   

18.
对某铝合金活塞在机械疲劳试验机上做的疲劳试验进行有限元分析,为活塞的改进设计提供依据。采用装有活塞销的三维整体活塞有限元模型,应用接触单元模拟实际情况,对活塞在交变机械载荷作用下的应力和应变进行了计算,找出了危险点部位,计算结果与试验吻合。  相似文献   

19.
为分析焊接结构在动态载荷下的疲劳强度,基于ANSYS瞬态分析的动态结构应力计算方法 ,充分考虑其自身振动对焊缝寿命的影响,施加交变载荷,利用有限元分析软件ANSYS进行瞬态响应分析,获得其动态结构应力,再根据主S-N曲线疲劳预测理论获得焊接结构的疲劳寿命。对比分析静态载荷作用下的焊接结构在BS标准和美国ASME标准计算得到的焊接结构疲劳寿命,动态结构应力法能更准确预测焊缝的疲劳寿命。  相似文献   

20.
基于实测载荷的蔬菜田间动力机械车架结构优化   总被引:2,自引:0,他引:2  
蔬菜田间动力机械作为一种新型机器,可以实现不同的收获前机械化作业,车架在田间作业时受到各种载荷作用,会伴随有动载荷影响,有必要对车架进行强度研究与优化设计。研究了其车架基于田间实测应变数据的多目标拓扑优化设计方法。利用HyperWorks软件对该车架进行有限元分析,得到了静应力分析条件下的应力分布,并确定车架的疲劳损伤热点;在数据分析基础上,粘贴应变片,组建动态应变测试系统,采集蔬菜田间动力机械典型作业工况下的载荷时间历程;对实测的应变时间历程数据进行预处理,分析车架在相应工况下的受力情况;利用nCode软件编制载荷谱,进行车架的疲劳分析与寿命预测,以此为基础提出了拓扑优化,构建了综合多种工况、以车架应变能和动态低阶固有频率为响应的多目标拓扑优化数学模型,进行轻量化设计。试验结果表明,车架的交叉焊缝处的疲劳寿命为7.5×104h,为15个测点中最短疲劳寿命,满足使用寿命要求,车架整体结构强度设计过剩。优化后的车架质量减小443.55kg,减轻了53.47%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号