首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
ABSTRACT:   To clarify the possible roles of gonadotropin-releasing hormone (GnRH) in the reproduction of Japanese flounder Paralichthys olivaceus , localization of salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and sea bream GnRH (sbGnRH) immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined together with follicle stimulating hormone (FSH) and luteinizing hormone (LH)-ir cells in the pituitary by immunohistochemistry. sGnRH-ir cell bodies were localized in the ventromedial part of the rostral olfactory bulb and cGnRH-II-ir cell bodies were restricted to the midbrain tegmentum, while sbGnRH-ir cell bodies were evident in the preoptic area. sGnRH-ir fibers were distributed throughout the brain, especially abundant in the forebrain. cGnRH-II-ir fibers were also scattered in many areas of the brain with abundance in the midbrain, but sbGnRH-ir fibers were observed in the preoptic–hypothalamic area and innervated the pituitary. In the pituitary, neither sGnRH-ir fibers nor cGnRH-II-ir fibers were found, but sbGnRH-ir fibers were profuse in the neurohypophysis and invaded the proximal pars distalis, targeting FSH and LH cells. These results suggest that three GnRH systems can play different physiological roles in the brain of Japanese flounder. Among them, sbGnRH is considered to be involved in reproduction by stimulating gonadotropin secretion, while sGnRH and cGnRH-II can function as a neurotransmitter and/or neuromodulator within the brain in this species.  相似文献   

2.
To study the physiological roles of gonadotropins (GtHs) in the yellowtail, the cDNAs encoding each GtH subunit (GPHα, FSHβ and LHβ) and their receptors (FSHR and LHR) were isolated from the pituitary gland and gonads using the polymerase chain reaction (PCR). In addition, thyrotropin (TSH) and its receptor (TSHR) cDNAs, were isolated from the pituitary gland, ovary and testis. The changes in the mRNA levels of each subunit were determined at different stages of maturation. The isolated cDNAs of GPHα, FSHβ, LHβ and TSHβ were 662, 545, 595 and 879 bp long, respectively. The amino acid sequence identity of the yellowtail GPHα, FSHβ, LHβ and TSHβ subunits was 85–63, 68–33, 93–65 and 74–46%, respectively, as compared with other fish species. Northern blot analysis showed that GPHα and FSHβ were strongly expressed in pituitary at the early vitellogenic stage and during spermatogenesis, whereas LHβ was expressed significantly in the late vitellogenic stage, and in both spermatogenesis and spermiation. Full-length cDNAs encoding FSHR, LHR, and TSHR were obtained from the testes and ovaries. The FSHR, LHR and TSHR cDNA encoded a protein of 680, 702 and 778 amino acids, and showed the highest identity with tilapia FSHR (76%), tilapia LHR (84%) and striped bass TSHR (94%), respectively. Northern blot analyses indicated that all of these receptors are expressed differently at different stages in the ovaries and testes.  相似文献   

3.
The endocrine regulation of reproduction in a multiple spawning fish with an asynchronous-type ovary remains largely unknown. The objectives of this study were to monitor changes in the mRNA expression of three gonadotropin (GtH) subunits (GPα, FSHβ, and LHβ) during the reproductive cycle of the female chub mackerel Scomber japonicus. Cloning and subsequent sequence analysis revealed that the cDNAs of chub mackerel GPα, FSHβ, and LHβ were 658, 535, and 599 nucleotides in length and encoded 117, 115, and 147 amino acids, respectively. We applied a quantitative real-time PCR assay to quantify the mRNA expression levels of these GtH subunits. During the seasonal reproductive cycle, FSHβ mRNA levels remained high during the vitellogenic stages, while GPα and LHβ mRNA levels peaked at the end of vitellogenesis. The expression of all three GtH subunits decreased during the post-spawning period. These results suggest that follicle-stimulating hormone (FSH) is involved in vitellogenesis, while luteinizing hormone (LH) functions during final oocyte maturation (FOM). Both GPα and FSHβ mRNA levels remained high during the FOM stages of the spawning cycle and increased further just after spawning. Thus, FSH synthesis may be strongly activated just after spawning to accelerate vitellogenesis in preparation for the next spawning. Alternatively, LHβ mRNA levels declined during hydration and then increased after ovulation. This study demonstrates that chub mackerel are a good model for investigating GtH functions in multiple spawning fish.  相似文献   

4.
The present study examined the differential mRNA expression levels of three forms of GnRH (sGnRH, pjGnRH and cGnRH-II) and two forms of GnRH receptor (pjGnRH-R I and pjGnRH-R II) in the brain, pituitary, and ovaries of pejerrey in relation to the reproductive status. The analysis revealed the presence of significant amounts of mRNA of the three GnRH forms while the ovaries showed only two (sGnRH and pjGnRH). The GnRH receptor II was found ubiquitously in the brain, pituitary, and ovaries while the form I was detected only in the brain. The levels of pjGnRH mRNA in the brain and pjGnRH-R II in the pituitary gland varied in correlation with the ovarian condition. However, brain sGnRH and pjGnRH-R I mRNA levels reached a maximum during early stages of ovarian development. In contrast, the brain levels of cGnRH-II mRNA showed no variation. The present study also shows a good correlation of ovarian sGnRH and pjGnRH-R II mRNA levels with the reproductive condition, suggesting that these molecules are may be involved in the regulation of pejerrey ovarian function.  相似文献   

5.
It has been established that secretion of gonadotropin (GtH) and growth hormone (GH) release in goldfish are both stimulated by GtH-releasing hormone (GnRH); in addition GtH secretion is inhibited by dopamine D2 mechanisms. In the present study, depletion of protein kinase C (PKC) in goldfish pituitary cells reduced the GtH and GH responses to GnRH and an activator of PKC in static culture. In perifusion studies, GtH released in response to sGnRH analog was greatly attenuated in PKC-depleted cells, however, hormone responses to forskolin were enhanced. Stimulation of dopamine D2 receptors reduced the GtH, but not the GH, responses elicited by PKC activators. These results indicate that PKC participates in the GtH and GH responses to natural neuroendocrine regulators in the goldfish.
Résumé Il a été établi que chez le poisson rouge, les sécrétions de gonadotropine (GtH) et d'hormone de croissance (GH) sont toutes les deux stimulées par la gonadolibérine (GnRH); de plus, la sécrétion de GtH est inhibée par des mécanismes dopaminergiques de type D2. Dans le présent travail, la déplétion de la teneur en protéine kinase C (PKC) dans des cellules hypophysaires de poisson rouge réduit les résponses en GtH et GH au GnRH et à un activateur de la PKC de cellules maintenues en incubation statique. Dans des cellules maintenues en périfusion et soumises à une déplétion en PKC, la GtH libérée en réponse à un analogue du sGnRH est fortement diminuée, cependent les réponses hormonales à la forskoline sont augmentées. La stimulation des récepteurs dopaminergiques D2 réduit, dans le cas d'action d'activateur de la PKC, la réponse en GtH mais pas en GH. Ces résultats indiquent que la PKC est impliquée dans les mécanismes de régulation de GtH et GH par des facteurs neuroendocriniens naturels.
  相似文献   

6.
Gonadotropin (GTH) hormones are glycoprotein which stimulates gonadal maturation in vertebrates. Follicle stimulating hormone is involved in initiation of gametogenesis and regulation of gonadal growth. FSHβ has been cloned and characterized from the brain of Catla catla. The FSHβ full‐length of cDNA sequence of 523 bp comprised 3, 394 and 128 bp of 5′‐UTR, open reading frame (ORF) 3′‐UTR respectively. The coding region of C. catla FSHβ encoded a peptide of 130 amino acids. Phylogenetic analysis of C. catla FSHβ deduced amino acid sequence showed high similarity with Gobiocypris rarus followed by goldfish, Carassius auratus. The qPCR result shows that FSHβ mRNA is mainly expressed in pituitary while moderate and low expression was observed in testis and ovary respectively. Chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) of particle size 125 nm, polydispersity index of 0.335 to 0.65 and zeta potential of ?34.95 mV were synthesized and evaluated at against naked kisspeptin‐10 for their reproductive hormonal profile. Treatment of fish with CK‐10 showed controlled and sustained surge of the reproductive hormones (FSH & LH) with peak at 12 h. The hormone levels of naked kisspeptin‐10 treated fish decline after 6 h. The sustained release of this CK‐10 will help in reducing maturation age, synchronization of ovulation and spawning in fish. This is the first report on use of chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) for reproduction in fish.  相似文献   

7.
Distinct expression of GnRH genes in the red seabream brain   总被引:1,自引:0,他引:1  
This paper reports the molecular cloning of a cDNA encoding the precursor of seabream gonadotropin-releasing hormone (prepro-sbGnRH) and the localization of salmon GnRH (sGnRH) and seabream GnRH (sbGnRH) expressing neurons in the brain of the red seabream (Pagrus major). The cloned prepro-sbGnRH cDNA has a 285 bps open reading frame encoding a 23 amino acid signal peptide, a 10 amino acid sbGnRH, the cleavage site (Gly-Lys-Arg), and a 59 amino acid GnRH-associated peptide. The expression of sGnRH and sbGnRH peptides, and prepro-sGnRH and prepro-sbGnRH mRNA were studied using immunocytochemistry and non-radioactive in situ hybridization, respectively. We found cell bodies that reacted positively with both the sGnRH cRNA probe and anti-sGnRH serum, but not with the sbGnRH cRNA probe or anti-sbGnRH serum in the ganglion of the terminal nerve. Cell bodies that reacted positively with the sbGnRH cRNA probe, anti-sbGnRH serum, and anti-sGnRH serum, but negatively with the sGnRH cRNA probe were found in the preoptic area (POA). Immunocytochemistry showed that a distinct bundle of axons arises in the POA which projected to the pituitary gland. These results suggest that sbGnRH is the most relevant hypophysiotropic form of GnRH.  相似文献   

8.
Multiple forms of the gonadotropin-releasing hormone (GnRH) exist in teleost fish. A salmonid fish, masu salmon Oncorhynchus masou has salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II). sGnRH neurons were scattered from the olfactory nerve through the ventral telencephalon (VT) and the preoptic area (POA). sGnRH but not cGnRH-II was detected in the pituitary. sGnRH mRNA levels in the VT and the POA increased during gonadal maturation, suggesting that sGnRH neurons in these areas are involved in gonadal maturation. sGnRH neurons were first detected in a cluster near the olfactory epithelium 40 days after fertilization. sGnRH neurons were not detected in the brain by the olfactory epithelia lesion, suggesting that sGnRH neurons are derived from the olfactory epithelium. A pleuronectiform fish, barfin flounder Verasper moseri has sGnRH, cGnRH-II and seabream GnRH (sbGnRH). sGnRH and cGnRH-II-immunoreactive fibers were observed throughout the brain, but not in the pituitary. sbGnRH neurons were located in the POA and sent fibers to the pituitary, indicating that sbGnRH is involved in GTH secretion. Judging from the location of neuronal somata and their projections, it is indicated that three GnRH systems exist in the barfin flounder; the TN-, the MT- and the POA-GnRH system. However, in masu salmon, clear anatomical identification of the TN- and the POA-GnRH system is difficult, because the GnRH neurons located in the ventral forebrain are consecutive and the GnRH form produced in these neurons is the same (sGnRH). Thus, it is suggested in masu salmon that sGnRH neurons are derived from the olfactory epithelium, migrate into the brain and play different roles according to the location in the brain.  相似文献   

9.
从半滑舌鳎Cynoglossus semilaevis Günther脑垂体中提取总RNA,利用RT-PCR和RACE技术首次克隆得到半滑舌鳎促滤泡激素(FSH)基因全长cDNA序列。半滑舌鳎FSHcDNA全长为541bp,开放阅读框为393bp,编码130个氨基酸(GenBank序列登录号:JQ277933)。发现一个N-糖基化位点:24~27NTT。与其他脊椎动物的FSH成熟肽氨基酸序列同源性比较表明,半滑舌鳎FSH与鲽形目和鲈形目鱼类FSH同源性为42%~49%,与鲤形目和高等脊椎动物FSH同源性为27%~319/5。用MEGA4.0软件构建了NJ树,获得的进化树表明,半滑舌鳎FSH与其他鱼类FSH聚类,亲缘关系较近。实时荧光定量组织表达分析表明,FSHmRNA除在垂体中大量表达外,其他组织也有表达,尤以脑、性腺表达量较高。半滑舌鳎FSHmRNA在垂体以外组织中的广泛表达,暗示FSH可能具有广泛的生理功能。  相似文献   

10.
Two gonadotropin-releasing hormone (GnRH) isoforms were identified in the beluga (Huso huso) brain by cDNA sequencing: prepro-mammalian GnRH (mGnRH) and prepro-chicken GnRH-II (cGnRH-II). The nucleotide sequences of the beluga mGnRH and cGnRH-II precursors are 273 and 258 base pairs (bp) long, encoding peptides of 91 and 86 amino acids, respectively. To investigate the effect of methylmercury (MeHg) on GnRH gene expression, animals were fed with four diets containing increasing levels of MeHg (0 mg kg−1 [control]; 0.76 mg kg−1 [low]; 7.8 mg kg−1 [medium]; 16.22 mg kg−1 [high]) for 32 days. The effects of MeHg on brain GnRH mRNA levels were evaluated by real-time PCR. A significant decrease in brain mGnRH and cGnRH-II mRNA levels were detected in fish receiving high dietary MeHg dose compared to controls on day 11 (P < 0.05). On day 18 and 32, all treatment groups had significantly lower brain mGnRH and cGnRH-II mRNA levels compared to the control group (P < 0.05). These findings demonstrate a disruptive role of MeHg on the level of brain mGnRH and cGnRH-II mRNAs in immature beluga.  相似文献   

11.
ABSTRACT:   A pleuronectiform fish, the barfin flounder Verasper moseri , expresses three gonadotropin-releasing hormone (GnRH) forms in the brain: salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and seabream GnRH (sbGnRH). To clarify the effects of photoperiod on GnRH systems, changes in brain and pituitary GnRH peptide levels were examined using time-resolved fluoroimmunoassays. In experiment 1, 5-month-old male barfin flounder (mean total length 9.0 cm, body weight 11.0 g) were divided into short (8:16 h light : dark [L:D] cycle; lights on 08.00–16.00 hours) and long photoperiod (16:8 h L:D cycle; lights on 04.00–20.00 hours) groups in mid September and maintained until November under natural water temperature (19.3–15.2°C). Brain sGnRH concentrations were significantly higher in the 16:8 h L:D group than in the 8:16 h L:D group, whereas no significant differences were observed in total length, body weight, plasma testosterone concentration, brain cGnRH-II concentration and pituitary sbGnRH content. In experiment 2, 7-month-old male barfin flounder (mean total length 16.5 cm, body weight 76.8 g) were divided into short and long photoperiod groups in mid December and maintained until February under natural water temperature (12.5–6.6°C). Total length, body weight and condition factor were significantly greater in the 16:8 h L:D group than in the 8:16 h L:D group, whereas no significant differences were observed in plasma testosterone concentration and GnRH levels in the brain and pituitary. These results indicate that levels of sGnRH in barfin flounder are influenced by photoperiodic treatment dependent on water temperature and/or body size.  相似文献   

12.
The stearoyl-CoA desaturase cDNA in tilapia (Oreochromis mossambicus) was cloned by RT-PCR and RACE, and it was compared with those in grass carp, common carp and milkfish. Nucleotide sequence analysis revealed that the full length of cDNA (1172 bp) clone encompasses 1008 bp open reading frame (ORF) encoding 336 amino acid residues. The deduced amino acid sequence shares 78–82% identity with the teleosts and 64–66% with mammals compared, and like these fish, the cloned tilapia stearoyl-CoA desaturase amino acid sequence conserves three histidine cluster motifs (one HXXXXH and two HXXHH), which functioned as non-heme iron binding sites, essential for stearoyl-CoA desaturase activity. RT-PCR and Northern blot analysis reveal that tilapia stearoyl-CoA desaturase is expressed only in liver, but the stearoyl-CoA desaturase expression in multiple tissues was observed in milkfish, grass carp and carp. Further, the hormonal regulation of stearoyl-CoA desaturase gene expression was investigated by a single injection of 17β-estradiol and testosterone. The results showed that the administration of 17β-estradiol to tilapia led to a greater increase in desaturase activity than testosterone, and higher doses of steroids produced greater increases in enzyme activity. The comparative RT-PCR analysis showed that the stearoyl-CoA desaturase mRNA level increased significantly in 17β-estradiol treated animals, especially in the groups receiving a single injection of 50 mg 17β-estradiol. This was reflected in the decrease in the saturated fatty acids and the increase in the monounsaturated fatty acids. The proportion of the polyunsaturated fatty acids was not affected.  相似文献   

13.
The brain of the pejerrey (Odontesthes bonariensis) has recently been shown to contain three forms of gonadotropin-releasing hormone (GnRH): salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and pejerrey GnRH (pjGnRH), nevertheless neuroanatomical studies on the distribution of these peptides are lacking. In this study we investigated the distribution of immunoreactive GnRH in the brain of adult pejerrey. Four different policlonal antisera and a monoclonal antibody against different GnRH variants were applied on cryosections and visualized using the ABC method. Three antisera (PBL#49, sGnRH#2 and cII741) revealed three different immunoreactive areas: the terminal nerve ganglion (at the junction between the olfactory bulbs and the anterior telencephalon), the preoptic area just anterior to the hypothalamus and the midbrain tegmentum. Fibers immunoreactive to GnRH were detected in different brain areas: the olfactory bulbs, the ventral thelencephalon, the hypothalamus, the mesencephalic area and an important innervation entering into the pituitary gland. Two other antibodies (LRH13 and s1668) labeled the two nuclei corresponding to the forebrain but not the midbrain tegmentum. As both antibodies have low crossreactivity to cGnRH-II, the data suggest that this group of cells express cGnRH-II. In summary, three different areas with immunoreactivity to GnRH were detected in the pejerrey brain. The distribution of sGnRH, pjGnRH and cGnRH-II expressing neurons, is discussed.  相似文献   

14.
ABSTRACT:   Wild adult maturing and immature female Japanese flounder Paralichthys olivaceus were collected in June 2004 and January 2005, respectively, to clarify a possible role of gonadotropin-releasing hormones (GnRHs) in reproduction. Levels of salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and sea bream GnRH (sbGnRH) in the brain and pituitary were examined by time-resolved fluoroimmunoassay. Three forms of GnRHs were detected in the discrete brain at various levels. In the pituitary of both maturing and immature fish, sbGnRH was abundant together with a pronounced amount of sGnRH, whereas cGnRH-II was almost below the detectable limit. In maturing fish, levels of sbGnRH were high in the telencephalon, hypothalamus and pituitary, while levels of sbGnRH of immature fish were very low in these regions. These results indicate that sbGnRH is mainly responsible for gonadotropin secretion, and that sbGnRH in the anterior part of the brain is associated with gonadal maturation in the Japanese flounder.  相似文献   

15.
Gonadotropin-releasing hormone and gonadotropin in goldfish and masu salmon   总被引:1,自引:0,他引:1  
Reproductive activities in vertebrates are regulated by an endocrine system, consisting of the brain-pituitary-gonad axis. In teleosts, gonadotropin-releasing hormone (GnRH) in the brain stimulates gonadotropin (GTH) release in the pituitary gland, but because of lack of the portal vessel, it is not known when and how much GnRH is released for the regulation of GTH release. There are multiple molecular types of GnRH in teleosts and several distinct populations of GnRH neurons in the brain. However, we do not know which types and populations of GnRH neurons regulate reproductive activities. Here we summarize our recent studies on GnRH and GTH in masu salmon Oncorhynchus masou and goldfish Carassius auratus. Immunocytochemistry showed the location and molecular types of GnRH neurons. Salmon (sGnRH) and chicken-II GnRH (cGnRH-II) neuronal fibers were widely distributed in the brain of both masu salmon and goldfish. Only sGnRH fibers were observed in the pituitary of masu salmon, whereas both sGnRH and cGnRH-II fibers were observed in the goldfish pituitary, indicating that species specific GnRH profiles are involved in the regulation of pituitary function in teleosts. A series of experiments in masu salmon and goldfish suggest that among GnRH neuron populations GnRH neurons in the ventral telencephalon and the hypothalamus regulate GTH release, and that GnRH of the terminal nerve origin is not essential to gonadal maturation and ovulation. The biological function of other GnRH neurons remains unkown. Two GTHs appear to be characteristic of teleost; however, regulation of reproduction by these GTHs is a question that remains to be elucidated. In salmonid species, it is proposed that GTH I stimulates early gonadal development, whereas GTH II acts in later stages. When GTH expression was examined in goldfish, both GTH I and II mRNA levels in the pituitary gland showed increases in accordance with gonadal development, unlike the sequential expression of GTH subunits in salmonids. The expression of these GTH subunit mRNAs were affected by water temperature, starvation, and steroid hormones in goldfish, but in what manner these two GTHs regulate gonadal development remains to be clarified.  相似文献   

16.
Abstract:   The question of whether the ovulation and spawning time in chub mackerel Scomber japonicus is entrained by a circadian rhythm was raised by our previous experiments. Further questions were also raised about whether the time course of human chorionic gonadotropin (hCG)-induced final oocyte maturation (FOM) and ovulation reflected the natural time course induced by endogeneous pituitary gonadotropin (GtH). To address these questions, hCG and gonadotropin-releasing hormone analog (GnRHa) were administered at two 'opposite' times, 14:00 and 02:00 hours, and the time courses of FOM and ovulation were compared. When hCG was injected, ovulation occurred 33 h post-injection in both groups, regardless of the timing of the hCG injection. The timing of ovulation in chub mackerel depends on the timing of hCG injection, but apparently not on circadian rhythms. When GnRHa was injected, ovulation began at 36 h post-injection of GnRHa, regardless of the timing of injection. These results indicate that the time course of FOM and ovulation in the chub mackerel followed a similar pattern whether stimulated by hCG injection or spontaneous luteinizing hormone (LH) surge because GnRHa induces the secretion of endogenous GtH (primarily LH) from the fish pituitary. Thus, it is concluded that the time course of hCG-induced FOM and ovulation in chub mackerel follows the natural time course induced by endogenous pituitary LH.  相似文献   

17.
18.
19.
Effects of gonadotropin-releasing hormone (GnRH) on thyroxine (T4) release in vivo and in vitro were studied in barfin flounder Verasper moseri, masu salmon Oncorhynchus masou and goldfish Carassius auratus. Seabream GnRH (sbGnRH) at a dose of 200 ng/50 g body weight (BW) significantly increased plasma T4 levels 1 h after the in vivo injection in the barfin flounder, but thereafter the levels normalized. Salmon GnRH (sGnRH) significantly increased plasma T4 levels l h after the injection with a significant return to initial levels in male masu salmon and male goldfish. In contrast, sGnRH and cGnRH-II in barfin flounder, and cGnRH-II in male masu salmon and male goldfish were not effective in stimulating T4 release. To clarify direct involvement of GnRH in T4 release, dissected lower jaw including scattered thyroid follicles was incubated with sbGnRH (1 μg/well) in barfin flounder, and with two doses (0.1 and 1 μg/well) of sGnRH in masu salmon and goldfish in vitro. T4 concentrations of control were stable during 24 h. Incubation of lower jaw with high dose (1 μg/well) of GnRH significantly (P<0.05) increased T4 concentrations of incubation medium at 1 h in all experimental fishes. These results indicate that direct stimulation of T4 secretion by GnRH occurs widely in teleost fish.  相似文献   

20.
采用cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)技术,克隆了罗非鱼(Oreochromis niloticus)谷胱甘肽过氧化物酶1(glutathione pemxidasel,GPx1)基因完整的编码序列(complete coding sequence,CDS)。GPx1基因全长984bp,5’uTR56bp,CDS576bp,3’UTR352bp,PolyA20bp;第791—885位碱基(位于3’UTR)形成1个硒半胱氨酸插入序列(selenocysteine insertion sequence,SECIS),协助174~176位密码子TGA(UGA)编码1个硒半胱氨酸(Sec)。GPx1包含191个氨基酸,分子量21.8kDa,等电点8.04,无信号肽和潜在的N.糖基化位点。蛋白结构分析表明该基因编码蛋白为非跨膜蛋白。序列比对显示,GPx1单体具有Sec、Trp、Gln和Asn构成的催化四联体。罗非鱼GPx1与其他脊椎动物GPx1相比较,核苷酸序列相似性为43.2%-58.2%,氨基酸序列相似性为58.1%~80.6%。进化分析显示,处在分类学上不同纲的脊椎动物GPx1分别占据了不同分支。利用Swiss-Model预测了罗非鱼GPx1的3D结构,序列分析显示,GPx1可以形成1个同源四聚体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号