首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌生物被膜(BBF)是指由附着于惰性或者活性实体表面的细菌细胞和包裹着细菌的由细菌自身所分泌的含水聚合性基质所组成的结构性细菌群落。生物被膜不仅是细菌存在于自然界的一种重要的生存形式,而且生物被膜的形成是细菌对抗生素广泛耐药的重要机制之一。作为细菌的一种适应性生物学特性.生物被膜菌具有与浮游菌不同的结构和生长、代谢特点.凭借其耐药屏障保护细菌不被机体免疫系统识别和清除.并且能降低抗菌药物渗入细菌体内的浓度.导致生物被膜菌较浮游菌具有更强的耐药性,不易被抗菌药物所杀灭.造成临床上生物被膜菌相关性感染的慢性、难治性特点。  相似文献   

2.
金黄色葡萄球菌(Staphylococcus aureus,S.aureus)是革兰氏阳性菌,可以引起人和动物感染化脓性疾病及毒素性疾病。S.aureus能够附着在一些医用器材上和宿主组织中,建立成熟的生物被膜(Bacterial biofilm,BF),从而引起持续性感染。细菌生物被膜一旦形成,不仅保护细菌免受宿主吞噬细胞的杀伤作用,而且对抗菌药物的耐药性增强,同时细菌对低氧、低营养环境的耐受性也增强,这是细菌适应环境的一种自我保护形式,使对其的临床治疗变得更加困难。所以,研究S.aureus生物被膜的形成及调控机制,对预防与治疗S.aureus引起的感染具有重大意义。  相似文献   

3.
细菌耐药性及生物被膜感染问题一直备受关注,抗生素的使用不当或滥用导致了细菌耐药性越来越严重,一些细菌出现了多重耐药甚至超级耐药的情况。为了抵抗宿主的免疫反应及抗菌药物的攻击,细菌聚集后会形成生物被膜。生物被膜的形成进一步加强细菌的耐药性,生物被膜感染是细菌性疾病迁延不愈的重要原因之一。寻找广谱、高效的抗菌和抗生物被膜的抗生素替代物是目前的研究热点。纳米银(silver nanoparticles, AgNPs)由于自身的物理、化学和生物学特性,在抗菌及抗生物被膜方面受到广泛的关注,其抗菌机制主要包括了破坏细胞壁和细胞膜、DNA损伤、氧化应激等,抗生物被膜机制主要包括抑制相关基因的表达、抑制聚集黏附、阻断群体感应等。论文综述了纳米银抗菌及抗生物被膜的研究进展,以期为开发新型抗菌药物提供参考。  相似文献   

4.
细菌生物被膜(bacterial biofilm,BBF)是粘附于载体表面,由其分泌的胞外多聚物包被的膜性结构。细菌生物被膜具有多重耐药性和免疫逃逸能力,因此具有高致病、难治愈的特性。致病菌生物被膜造成疾病的迁延不愈甚至患者死亡,已成为医学界关注的热点,干预细菌生物被膜的方法是当下研究重点。文章从物理、化学、生物学三个方向,对清除细菌生物被膜方法的国内外研究情况进行了综述。  相似文献   

5.
细菌生物被膜(bacterial biofilms)是由细菌互相粘连、不可逆地固着于生物机体或物体表面并由细菌分泌的胞外基质包裹的微生物群落。生物被膜为细菌提供了一种保护性生活方式,其形成有利于微生物持续定植,抵抗宿主免疫系统清除,提高对抗生素的耐受性以及遗传物质的交换。细菌生物被膜的存在对生物医学、食品加工等方面极为不利,因此,迫切需要研发能够去除生物被膜的新技术。目前,噬菌体被认为是控制生物被膜的一种有效方法。本文综述了应用噬菌体防控生物被膜的最新进展。  相似文献   

6.
细菌生物被膜(BBF)的存在大大增加了生物被膜(BF)内细菌的存活率和耐药性,生物被膜的研究已经成为研究细菌耐药机制及致病性的重要方向,了解细菌生物被膜形成中的影响因素及生物被膜的检测方法,对生物被膜的研究有重要意义。文章重点综述了细菌生物被膜形成的影响因素及常用的实验室检测方法。  相似文献   

7.
细菌生物被膜与抗生素耐药机制研究进展   总被引:7,自引:0,他引:7  
细菌引发的感染已成为感染性疾病的主要原因之一,具有耐药性和难治性的特点,而且还可以对抗机体的免疫清除作用,对人类和动物的健康造成很大的危害,也给人们生活的其他方面带来了越来越严重的影响,引起了基础和临床研究的极大关注。但是细菌生物被膜对抗生素的耐药机制目前还不十分清楚,现对近年来细菌生物被膜对抗生素耐药形成的几种可能机制进行综述。  相似文献   

8.
细菌生物被膜(BBF)[1]是指由附着于惰性或者活性实体表面的细菌细胞和包裹着细菌的由细菌自身所分泌的含水聚合性基质所组成的结构性细菌群落.  相似文献   

9.
细菌生物被膜(BBF)是一类由生物大分子包裹细菌而形成的具有特殊复杂结构的微克隆多细胞群体,由其感染所引起的疾病具有迁延不愈、反复发作等特点,在临床上有较大危害性。当前临床上用于治疗细菌生物被膜疾病的药物主要集中于大环内酯类抗生素,文章综述了细菌生物被膜结构特点和大环内酯类抗生素的药效动力学,并将大环内酯类抗生素清除、抑制细菌生物被膜的主要机理归纳为阻碍细菌黏附过程、破坏细菌生物被膜基础结构和干扰细菌的群体感应系统。  相似文献   

10.
猪胸膜肺炎放线杆菌(App)引起猪的慢性呼吸道感染,给养猪业造成重大的经济损失。细菌生物被膜(BBF)是细菌为适应自然环境,吸附于生物材料或机体腔道表面保护细菌逃逸形成的细菌群落,由此引起的相关感染性疾病及慢性感染的反复发作称为细菌生物被膜病。App生物被膜(BF)属于菌体外具有空间结构的聚合物,其形成受多种基因调控,其中多药耐药外排泵和Ⅰ型分泌系统关键成分TolC基因缺失导致AppBF黏附减弱;Clp蛋白水解复合物的催化核心ClpP基因缺失引起BF形成受到抑制;App外膜脂蛋白VacJ促进BF的形成;活性酶LuxS基因缺失显示增强AppBF的形成,并减少细菌黏附能力;Adh基因缺失明显降低细菌的积聚、BF形成和对宿主细胞黏附。文章从分子水平上阐述AppBF形成或抑制机制,为探讨防制其生物被膜病提供参考依据。  相似文献   

11.
大肠埃希菌生物被膜研究进展   总被引:1,自引:0,他引:1  
细菌生物被膜指多个细菌黏附于机体或物体表面,分泌胞外多聚物将其自身包裹其中而形成的结构。研究表明人类许多细菌感染与生物被膜有关,生物被膜具有极高的抗药性和免疫逃逸能力,这也是许多细菌感染难以根除的重要原因之一,近年来已成为医学界关注的热点。大肠埃希菌是最重要的条件致病菌之一,论文从大肠埃希菌生物被膜的形态结构、检测方法、耐药机制、应对策略4个方面综述了大肠埃希菌生物被膜研究的进展。  相似文献   

12.
在自然界,绝大多数细菌是附着在有生命或无生命的物体表面,以生物膜的形式存在,医学上估计超过80%的人类感染性疾病是由生物膜介导。由于生物膜特定的生长方式,其生物学特征明显不同于游离状态的细菌。本文将结合生物膜的研究进展着重对细菌生物膜的成分、结构、形成及主要特点等作一综述。  相似文献   

13.
生物被膜的形成是大肠杆菌引起消化道反复难治性感染的重要因素。大肠杆菌形成生物被膜后使感染易于慢性化、控制困难,具有高度耐药性的同时还能逃避免疫系统的攻击和抗菌药物的杀伤作用。生物被膜的耐药机制主要包括营养限制、渗透障碍、表型结构学说等。现就大肠杆菌生物被膜的形成、耐药机制及其防治策略等研究现状做一综述。  相似文献   

14.
侯博  王晨燕  周伦江 《畜牧兽医学报》2022,53(10):3326-3334
毒素-抗毒素(toxin-antitoxin,T-A)系统广泛存在于细菌基因组和质粒中,调控细菌的多种生理活动。细菌生物被膜是细菌适应应激环境(不利环境)而采取的一种生存策略,其具有极强的耐药性及免疫逃逸性,广泛存在于自然界,具有广泛的危害性,严重威胁畜禽和人类的健康。本文对不同类型的T-A系统在细菌生物被膜形成中的作用和分子机制进行综述,旨在为更好地了解和掌握细菌T-A系统在生物被膜形成中的作用和调控关系,为生物被膜的清除和控制奠定基础。  相似文献   

15.
本试验分别采用微量肉汤稀释法和改良结晶紫法对65株文昌鸡源大肠杆菌进行15种临床常用抗菌药物耐药性检测和生物被膜形成能力鉴定,以了解海南文昌鸡源大肠杆菌耐药谱型和生物被膜表型之间的相关性。结果显示,65株文昌鸡源大肠杆菌中89.23%具有多重耐药现象,64.62%具有交叉耐药现象;81.54%的菌株具有不同的生物被膜形成能力,只有18.46%的菌株无细菌生物被膜形成能力。本试验结果表明,具有生物被膜形成能力的菌株大都表现出多重耐药性,但交叉耐药性与无生物被膜形成能力菌株相差不明显。  相似文献   

16.
《中国兽医学报》2014,(10):1693-1698
细菌生物被膜是指由于单一或多种类群细菌为了适应周围环境,由自身产生的多聚基质包围而形成,吸附于异物或组织表面,具有三维立体结构的膜样物,是细菌微菌落聚集体。生物被膜保护着细菌得以在恶劣环境中存活生长,较之浮游细菌,其更能抵抗宿主的免疫反应、抗生素及消毒剂的攻击。目前致病菌生物被膜形成在兽医学上的重要性极少受到关注,本文对细菌生物被膜的基础知识及动物重要病原菌已做的研究作一综述,旨在阐明病原菌形成生物被膜的机理,更加重视细菌生物被膜状态在动物疾病中的重要作用,并针对细菌生物被膜形成过程中重要的关键基因设计新型药物。  相似文献   

17.
近年来抗菌药物的广泛使用,导致细菌耐药性问题日益严重,耐药菌所致的感染给人类健康及畜禽生产带来巨大威胁,随着高通量测序技术的迅速发展,细菌转录组学的研究可帮助人们探究细菌耐药前后发生差异表达的基因以及筛选出具有调控作用的非编码RNA。本文以细菌耐药性的产生机制和调控机制为出发点,从转录组水平探讨耐药细菌中外排泵系统、二元调控系统、代谢途径相关基因的差异表达情况和非编码RNA对细菌外排泵系统、细胞膜通透性和生物被膜的调控机制,以期为细菌耐药性研究奠定基础。  相似文献   

18.
生物被膜的形成过程及耐药机制   总被引:1,自引:0,他引:1  
细菌生物被膜(Bacterial Biofilm,BBF)是临床常见感染的主要致病原,可导致感染迁延不愈和反复急性发作。由于细菌生物被膜可以保护细菌抵御抗菌药物的杀伤和逃逸宿主的免疫,导致临床相关感染的难治性。所以,BBF耐药屏障的研究已成为国外医学、药学、微生物学专家关注的重要课题。  相似文献   

19.
《中国兽医学报》2019,(11):2227-2232
通过电镜观察木糖醇对引起奶牛乳房炎的无乳链球菌生物被膜形成的影响并探索其抑菌机理。首先采用卡尔加里生物被膜发生装置与结晶紫染色法定量分析和评价无乳链球菌生物被膜形成能力,再选取生物被膜形成能力强的典型菌株,应用内置载体片法构建生物被膜,并进行扫描电镜观察;最后,分别通过透射及扫描电镜分析不同浓度的木糖醇对无乳链球菌及其生物被膜的影响。内置载体片法试验结果显示,无乳链球菌的生物被膜完全成熟需要连续培养4 d,此时细菌黏附于接触表面,分泌多糖基质等并逐渐将其自身包绕其中;透射电镜观察结果显示,木糖醇可通过破坏无乳链球菌结构来抑制其生长,且随浓度增加抑菌效果亦显著增加。此外,不同质量浓度木糖醇溶液(0.05,0.15,0.30和0.50 kg/L)处理的载体片上生物被膜细菌数量均有不同程度的减少,其中以0.50 kg/L最为显著。结果表明,木糖醇可改变无乳链球菌超微结构,也可通过破坏其生物被膜来抑制细菌生长。  相似文献   

20.
金黄色葡萄球菌是引起奶牛细菌性乳腺炎的主要原因,生物被膜的形成是金黄色葡萄球菌在不利环境条件下持久性存在的关键因素。探索同一株菌在生物被膜态与浮游态生长状态下的耐药性与其生长状态的相关性,可为进一步探究金黄色葡萄球菌的耐药性机制奠定基础。本研究培养了金黄色葡萄球菌的生物被膜,使用光学显微镜和扫描电镜观察其形成过程。测定并比较了9种抗菌药物对32株金黄色葡萄球菌在生物被膜态和浮游态的最小抑菌浓度,并对两种状态下的金黄色葡萄球菌进行转录组学测序,筛选出具有显著性差异的细胞信号通路和表达基因,同时对主要差异表达的基因进行RT-qPCR验证。结果发现,在生物被膜形成前期,随着培养时间的延长,显微镜下观察到的生物被膜态菌聚集面积越来越大,结构也越来越紧密,培养至72 h后,生物被膜逐渐开始分散。MIC测定结果显示浮游态菌的抑菌浓度低于生物被膜态菌。转录组结果显示两种状态菌的差异表达基因共1 512个,其中,生物被膜态菌中上调基因760个,下调752个。GO与KEGG富集分析显示,相比于浮游态菌,生物被膜态菌中与代谢相关的通路显著富集,其次为氨基酸的生物合成和ABC转运蛋白通路。与生物被膜形成相关的基因,如编码ABC转运蛋白的基因表达上调,而与代谢途径相关的基因下调。RT-qPCR验证了10个主要差异基因,其表达差异趋势与转录组测序结果一致。这些差异可能对金黄色葡萄球菌生物被膜态的高耐药性和细菌毒力的研究有所帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号