首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H1N1 and H3N2 are the dominant subtypes causing swine influenza in China and other countries. It is important to develop effective vaccines against both H1N1 and H3N2 subtypes of swine influenza virus (SIV). We examined the effects of a DNA vaccine expressing an influenza HA fused to three copies of murine complement C3d in mice. Plasmids encoding soluble HA (sHA), complete HA (tmHA), or a soluble fused form of HA (sHA-mC3d3) were constructed from the H3N2 subtype of SIV. The immune response was monitored by an enzyme-linked immunosorbent assay (ELISA), hemagglutination inhibition (HI) assays, and virus neutralization tests. Analysis of antibody titers indicated that immunization with HA-mC3d3 resulted in higher titers of anti-HA antibodies and higher antibody affinities, compared with serum from mice immunized with sHA or tmHA. Furthermore, the C3d fusion increased the Th2-biased immune response, by inducing IL-4 production. Splenocytes from mice immunized with sHA-mC3d3 produced about three-fold more IL-4 than did splenocytes from mice immunized with sHA or tmHA. Seven days post-challenge with homologous virus (H3N2), no virus was isolated from the mice immunized with HA-expressing plasmids. However, 10 days post-challenge with heterologous virus (H1N1), only mice immunized with sHA-mC3d3 had no virus or microscopic lesions in the kidneys and cerebrum. In conclusion, C3d enhanced antibody responses to hemagglutinin and protective immunity against SIV of different subtypes.  相似文献   

2.
The hemagglutinin (HA) gene of A/Swine/Inner Mogolian/547/2001 (H3N2) swine influenza virus (SIV) was recombined into the genome of pseudorabies virus (PRV) Bartha-K61 vaccine strain, generating a recombinant PRV expressing the HA gene, designated as rPRV-HA. One group of 15 mice was inoculated intranasally (i.n.) with 10(5.0) PFU of rPRV-HA, and another two control groups of mice (15 mice per group) were mock-inoculated or inoculated with Bartha-K61. Mice inoculated with rPRV-HA developed hemagglutination inhibition antibodies 3 weeks post-inoculation. Twenty-eight days post-inoculation, all mice were challenged i.n. with 10(5.0) TCID50 of A/Swine/Heilongjiang/74/2000 (H3N2). No challenge virus was isolated from vaccinated mice, and mild pathological lesions were observed only in lungs following challenge. The results demonstrate that the recombinant rPRV-HA expressing the HA gene from H3N2 SIV can protect mice from heterologous virulent challenge, and may represent a candidate vaccine against SIV.  相似文献   

3.
以小鼠为动物模型,对此前构建的表达H3N2亚型猪流感病毒(SIV)血凝素(HA)基因的重组伪狂犬病病毒(rPRV-HA)进行了免疫效力评价。按每只10^5.0 TCID50 rPRV-HA的剂量通过滴鼻接种8周龄雌性BALB/c小鼠(n=60),同时设Bartha-K61免疫对照组(n=60)、非免疫攻毒对照组(n=20)和非免疫不攻毒对照组(n=10)。于免疫后不同时间分别从rPRV-HA免疫组和Bartha—K61免疫对照组随机剖杀一定数量的小鼠,其余小鼠于免疫后第28天用10^5.0 TCID50同亚型SIV毒株A/Swine/Heilongjiang/74/2000(H3N2)进行强毒攻击。攻毒后第4、7、14天分别剖杀小鼠,进行间接免疫荧光、病毒分离、血清学和病理组织学检测。结果表明,重组病毒主要分布于肺脏;免疫后14d起,从rPRV—HA免疫组及Bartha—K61免疫对照组均可检测到针对PRV的荧光抗体;从rPRV—HA免疫组可以检测到针对SIV的荧光抗体和血凝抑制抗体,而各对照组均呈阴性。攻毒后从rPRV—HA免疫组小鼠未分离到攻击病毒,血凝抑制抗体显著升高,病理变化显著轻于对照组,表明rPRV—HA免疫小鼠可以抵抗同亚型SIV的攻击,可以作为rPRV—HA免疫效力评价模型。  相似文献   

4.
表达H3N2亚型猪流感病毒HA基因重组伪狂犬病病毒的构建   总被引:4,自引:1,他引:4  
将SV40启动子控制下的LacZ基因表达盒和CMV启动子控制下的H3N2亚型猪流感病毒(SIV H3N2)的HA基因插入到伪狂犬病病毒(PRV)通用转移载体pBdTK-Uni中,获得转移载体pLTK-HA。将该载体与PRV Bartha-K61株基因组DNA通过脂质体法共转染Vero细胞,经过10代蓝斑筛选、纯化和PCR鉴定获得了一株插入SIV HA基因的重组伪狂犬病病毒,命名为rPRV-HA。Western blotting和间接免疫荧光试验证实HA基因在重组病毒感染的细胞中获得了表达。用不同的细胞(PK-15、IBRS-2、Vero和鸡胚成纤维细胞)对该重组病毒与亲本病毒的增殖滴度和致细胞病变进行比较,未见显著差异,对第30代重组病毒的HA基因进行序列分析,表明该重组病毒遗传性状稳定。  相似文献   

5.
An alphavirus derived replicon particle (RP) vaccine expressing the cluster IV H3N2 swine influenza virus (SIV) hemagglutinin (HA) gene induced protective immunity against homologous influenza virus challenge. However, pigs with maternal antibody had no protective immunity against challenge after vaccination with RP vaccines expressing HA gene alone or in combination with nucleoprotein gene.  相似文献   

6.
禽痘病毒感染对禽流感重组禽痘病毒疫苗免疫效力的影响   总被引:1,自引:0,他引:1  
表达禽流感病毒 (AIV)HA和NA基因的重组禽痘病毒rFPV_HA_NA能够诱导鸡体产生 10 0 %抵抗高致病性禽流感病毒 (HPAIV)H5N1的攻击。而当鸡群已进行禽痘疫苗免疫或者感染了禽痘病毒的情况下 ,此重组疫苗的免疫效力如何 ?首先用禽痘病毒S_FPV_0 17人工感染SPF试验鸡 ,既而在感染后的不同间隔时间接种重组疫苗 ,免疫后检测鸡群的HI抗体水平 ,同时用 10 0LD50 的HPAIVH5N1进行攻击。结果重组疫苗免疫与禽痘病毒人工感染时间间隔在 4周 (或以上 )时 ,预先感染禽痘病毒对重组疫苗的免疫效力不构成影响 ,对禽流感的保护力为 10 0 % ,而间隔时间在 1、2、3周时 ,重组疫苗的免疫保护效力则受到不同程度的影响。  相似文献   

7.
Vaccine approaches against AIDS have focused on inducing cellular immune responses, since many studies revealed the role of T cell responses in the control of human immunodeficiency virus or simian immunodeficiency virus (SIV) infections. The experimental infection of rhesus macaques with SIV or chimeric SHIV is routinely used as a model for AIDS. In such models, DNA immunization is a tool to elicit specific T cell responses and to study their protective efficacy. DNA immunogenicity in primates depends on parameters such as level of antigen expression, choice of the antigen among SIV proteins, use of fusion proteins, route of immunization, and addition of adjuvants. Recent results suggest that priming with DNA and boosting with attenuated recombinant viral vectors, each expressing corresponding SIV antigens, leads to improved specific immunity and, in some cases, affords protection against pathogenic challenge. After preclinical evaluations, DNA has entered clinical trials for a therapeutic or prophylactic gene-based AIDS vaccine.  相似文献   

8.
This study was designed to evaluate the prime-boost vaccination regimens as a novel immunization strategy for DNA vaccine against classical swine fever virus (CSFV). BALB/c mice were primed with the alphavirus replicon-vectored DNA vaccine pSFV1CS-E2-UL49 encoding the E2 protein of CSFV fused with the UL49 gene encoding the transduction protein VP22 of pseudorabies virus, followed by either homologous boosting with pSFV1CS-E2-UL49 or heterologous boosting with the recombinant adenovirus rAdV-E2 expressing the E2 protein or with the baculovirus-produced recombinant E2 protein (rE2) in adjuvant. The humoral and cell-mediated immune responses following prime-boost vaccination were assessed. The results showed that: (1) boosting with either rAdV-E2 or rE2 elicited high-level antibodies, whereas homologous boosting with pSFV1CS-E2-UL49 elicited low-level antibodies (below positive threshold); (2) heterologous boosting with rAdV-E2 resulted in stronger CD8+ and CD4+ T cells proliferation responses and higher stimulation indexes; and (3) heterologous boosting with rAdV-E2 induced more IFN-γ production. These results support the notion that a regimen of DNA prime-recombinant adenovirus boost enhances humoral and cell-mediated immune responses, and the DNA prime-protein boost regimen enhances humoral immune responses.  相似文献   

9.
应用已构建的真核表达质粒pCI-H1-HA、pCAGGS-H1-HA、pCI-H3-HA和pCAGGS-H3-HA作为DNA疫苗,利用BALB/c小鼠进行免疫保护试验,通过测定不同免疫期HI抗体滴度、分析攻毒后BALB/c小鼠体重变化及肺脏病毒含量,评价DNA疫苗的免疫效力。结果表明:构建的DNA疫苗均可诱导小鼠产生免疫力;BALB/c小鼠体重变化统计学分析显示,免疫组与对照组差异极显著(P〈0.01),pCAGGS表达载体构建的DNA疫苗免疫效果优于pCI表达载体构建的DNA疫苗(P〈0.05)。  相似文献   

10.
运用PCR技术扩增出伪狂犬病病毒糖蛋白gD基因,将该基因定向克隆于真核表达载体pcDNA3.1+、pCI-neo中,命名重组质粒为pcD-gD、pCI-gD.以小鼠为动物模型,对构建的基因疫苗进行免疫原性的初步评价.为了证明细胞因子是否能增强基因疫苗的免疫效力,本试验用IL-15的表达质粒联合pcD-gD、pCI-gD免疫.结果表明,重组质粒组主要提高细胞免疫水平,特别是联合组中的CD8~+相对其他组别较高.重组质粒在体液免疫方面没有表现出优势,抗体滴度达不到阳性对照组的水平,但是整个抗体水平相对稳定,提示DNA疫苗诱导的抗体维持时间较长.  相似文献   

11.
为了构建融合表达分子佐剂猪补体C3d与猪流感病毒血凝素(HA)的真核表达载体,论文克隆了猪C3d全长基因与H3N2亚型猪流感病毒的HA基因,并构建了包含3拷贝的C3d和经过改造的HA(替换信号肽并去除跨膜区)的质粒pHA-C3d3.序列分析表明,获得的猪C3d与参考序列相比核苷酸同源性达到99.7%,氨基酸同源性达99...  相似文献   

12.
Hemagglutinin protein plays an important role in disease prevention and treatment of the swine influenza virus (SIV).In order to clone and express subtype H3N2 SIV A/swine/Henan/1/2010 (H3N2) HA1 and HA2 genes with chicken embryo allantoic fluid containing the H3N2 SIV after extraction of RNA.The HA1 gene and HA2 gene were amplified from the total RNA using RT-PCR and they were inserted into prokaryotic expression vector pET-28a (+) to construct recombinant expression vector.Then the vector was transformed and expressed in E.coli BL21 (DE3) pLyS.Then the bacteria were induced by IPTG and their lysates were analyzed by SDS-PAGE and Western blotting,respectively.The monoclonal antibody 1C10,which was specific to HA protein,was used as primary antibody in Western blotting analysis.It was found that the expressed recombinant HA1 protein was 34.8 ku and recombinant HA2 protein was 23.2 ku analyzed by SDS-PAGE.As demonstrated by Western blotting,this HA1 expressed products showed the capacity of reacting with monoclonal antibody 1C10.All the results suggested that the expressed HA1 and HA2 proteins of H3N2 influenza virus would be very helpful in the development of rapid diagnosis method and vaccine development,which would facilitate further study on the function of HA at the same time.  相似文献   

13.
血凝素(hemagglutinin,HA)蛋白是猪流感病毒(swine influenza virus,SIV)的一个重要蛋白,在疾病预防和治疗中具有重要作用。本试验旨在克隆和表达H3N2亚型猪流感病毒A/swine/Henan/1/2010(H3N2)的HA1和HA2基因。用含有H3N2亚型SIV的鸡胚尿囊液提取RNA,RT-PCR扩增后将目的基因定向克隆到pET-28a(+)原核表达载体上,并将其转入宿主菌BL21(DE3)pLyS进行表达,IPTG诱导后经SDS-PAGE检测并用该病毒重组HA蛋白制备的特异性单克隆抗体1C10作为一抗对两种蛋白进行Western blotting分析。SDS-PAGE结果显示,得到HA1和HA2大小分别为34.8、23.2 ku的重组蛋白,Western blotting结果表明,HA1蛋白与1C10单克隆抗体具有良好的反应原性,且1C10单克隆抗体表位在HA1蛋白上。本试验结果为进一步研究血凝素蛋白的结构和功能,以及建立快速诊断方法和基因工程疫苗提供材料。  相似文献   

14.
Sows and gilts lack immunity to human adenovirus 5 (Ad-5) vectored vaccines so immunogens of swine pathogens can be expressed with these vaccines in order to immunize suckling piglets that have interfering, maternally derived antibodies. In this study 7-day-old piglets, that had suckled H3N2 infected gilts, were sham-inoculated with a non-expressing Ad-5 vector or given a primary vaccination with replication-defective Ad-5 viruses expressed the H3 hemagglutinin and the nucleoprotein of swine influenza virus (SIV) subtype H3N2. The hemagglutination inhibition (HI) titer of the sham-inoculated group (n = 12) showed continued antibody decay whereas piglets vaccinated with Ad-5 SIV (n = 23) developed an active immune response by the second week post-vaccination. At 4 weeks-of-age when the HI titer of the sham-inoculated group had decayed to 45, the sham-inoculated group and half of the Ad-5 SIV vaccinated pigs were boosted with a commercial inactivated SIV vaccine. The boosted pigs that had been primed in the presence of maternal interfering antibodies had a strong anamnestic response while sham-inoculated pigs did not respond to the commercial vaccine. Two weeks after the booster vaccination the pigs were challenged with a non-homologous H3N2 virulent SIV. The efficacy of the vaccination protocol was demonstrated by abrogation of clinical signs, by clearance of challenge virus from pulmonary lavage fluids, by markedly reduced virus shedding in nasal secretions, and by the absence of moderate or severe SIV-induced lung lesions. These recombinant Ad-5 SIV vaccines are useful for priming the immune system to override the effects of maternally derived antibodies which interfere with conventional SIV vaccines.  相似文献   

15.
DNA疫苗的免疫效果与抗原基因的表达量及表达抗原的免疫原性有直接关系。为了提高猪流感病毒(Swine influenza virus,SIV)HA基因DNA疫苗的表达量,增强其免疫效果,本研究通过人工合成的方法将H1亚型猪流感病毒A/Swine/Guangdong/1/01(H1N1)的HA基因密码子优化为猪体内偏嗜性密码子optiHA,同野生型A/Swine/Guangdong/1/01(H1N1)的HA基因分别与真核表达载体PCAGGS连接构成重组质粒PCAGGS—optiHA和PCAGGS—HA,然后分别转染293T细胞,48h后采用间接免疫荧光的方法检测Ⅲ基因的瞬时表达蛋白情况。将质粒PCAGGS—HA、PCAGGS—optiHA以100μg/只的剂量,采用后腿肌肉多点注射的方式,免疫6-8周龄雌性BALB/c小鼠,同时设立空载体PCAGGS对照。共免疫3次,每次间隔2周,三免2周后对每组以10^3.87 EID50的A/Swine/Guangdong/1/01(H1N1)进行攻毒。采用ELISA、血凝抑制试验、细胞因子检测和肺组织病毒含量测定等实验评价这两种DNA疫苗的免疫效果。结果表明,HA基因密码子优化的DNA疫苗可显著提高体液免疫和细胞免疫的应答水平,攻毒后免疫组PCAGGS—optiHA的保护效力明显高于免疫组PCAGGS—HA。这一结果为进一步研究和设计有效的SIVDNA疫苗奠定了基础。  相似文献   

16.
Two US swine influenza virus (SIV) isolates, A/Swine/Iowa/15/1930 H1N1 (IA30) and A/Swine/Minnesota/00194/2003 H1N2 (MN03), were evaluated in an in vivo vaccination and challenge model. Inactivated vaccines were prepared from each isolate and used to immunize conventional pigs, followed by challenge with homologous or heterologous virus. Both inactivated vaccines provided complete protection against homologous challenge. However, the IA30 vaccine failed to protect against the heterologous MN03 challenge. Three of the nine pigs in this group had substantially greater percentages of lung lesions, suggesting the vaccine potentiated the pneumonia. In contrast, priming with live IA30 virus provided protection from nasal shedding and virus replication in the lung in MN03 challenged pigs. These data indicate that divergent viruses that did not cross-react serologically did not provide complete cross-protection when used in inactivated vaccines against heterologous challenge and may have enhanced disease. In addition, live virus infection conferred protection against heterologous challenge.  相似文献   

17.
为了提高甲型H1N1流感病毒HA基因DNA疫苗的免疫原性,本研究将流感病毒rPan09(HA和NA来自A/California/04/09,其余6个片段来自PR8的重组病毒)的HA基因通过人工合成的方法将其密码子优化为哺乳动物体内偏嗜性密码子opti-HA,同未优化的rPan09的HA基因分别与真核表达载体pCAGGS连接构成重组质粒pCA-optiHA和pCA-HA转染293T细胞,48 h后采用间接免疫荧光的方法检测HA基因的体外表达情况,结果显示重组质粒pCA-optiHA的蛋白表达量明显高于pCA-HA。为评价这两种重组质粒的免疫及保护效力,选取6~8周龄雌性BALB/c小鼠,将质粒pCA-HA、pCA-optiHA以100μg/只的剂量,进行后腿肌肉多点注射,同时设立空载体pCAGGS对照,共免疫3次,每次间隔2周。结果表明DNA疫苗pCA-optiHA可显著提高小鼠的体液免疫和细胞免疫应答水平。三免2周后用107.45EID50的rPan09采用滴鼻方式进行攻毒,用Real-time PCR及制作肺组织石蜡切片检测DNA疫苗的保护效力。结果表明,pCA-optiHA免疫组的保护效力明显高于pCA-HA免疫组。本研究为进一步研究和设计有效的甲型流感病毒DNA疫苗奠定了基础。  相似文献   

18.
为评价马流感病毒(EIV)HA基因核酸免疫效果,本研究以甲病毒复制子载体pSFV1CS分别构建了表达EIV H3N8亚型的美洲型和欧洲型HA基因的重组真核表达质粒。并将其转染293T细胞,经间接免疫荧光鉴定表明HA基因获得表达;以重组质粒免疫的BALB/c鼠能够检测到特异性抗体产生,而且HI抗体水平持续升高,同时小鼠体内IFN-γ、IL-4分泌水平也有所升高。攻毒后小鼠表现轻度临床症状,但病毒分离和RT-PCR均未检测到病毒。上述结果表明,该重组质粒pSFV1CS-EIV-HA具有良好的免疫原性并且可以诱导免疫动物产生较高免疫应答的能力。  相似文献   

19.
We compared the efficacy of 3 commercial vaccines against swine influenza A virus (SIV) and an experimental homologous vaccine in young pigs that were subsequently challenged with a variant H3N2 SIV, A/Swine/Colorado/00294/2004, selected from a repository of serologically and genetically characterized H3N2 SIV isolates obtained from recent cases of swine respiratory disease. The experimental vaccine was prepared from the challenge virus. Four groups of 8 pigs each were vaccinated intramuscularly at both 4 and 6 wk of age with commercial or homologous vaccine. Two weeks after the 2nd vaccination, those 32 pigs and 8 nonvaccinated pigs were inoculated with the challenge virus by the deep intranasal route. Another 4 pigs served as nonvaccinated, nonchallenged controls. The serum antibody responses differed markedly between groups. After the 1st vaccination, the recipients of the homologous vaccine had hemagglutination inhibition (HI) titers of 1:640 to 1:2560 against the challenge (homologous) virus. In contrast, even after 2nd vaccination, the commercial-vaccine recipients had low titers or no detectable antibody against the challenge (heterologous) virus. After the 2nd vaccination, all the groups had high titers of antibody to the reference H3N2 virus A/Swine/Texas/4199-2/98. Vaccination reduced clinical signs and lung lesion scores; however, virus was isolated 1 to 5 d after challenge from the nasal swabs of most of the pigs vaccinated with a commercial product but from none of the pigs vaccinated with the experimental product. The efficacy of the commercial vaccines may need to be improved to provide sufficient protection against emerging H3N2 variants.  相似文献   

20.
Intradermal vaccination with plasmid DNA encoding envelope glycoprotein C (gC) of pseudorabies virus (PrV) conferred protection of pigs against Aujeszky's disease when challenged with strain 75V19, but proved to be inadequate for protection against the highly virulent strain NIA-3. To improve the performance of the DNA vaccine, animals were vaccinated intradermally with a combination of plasmids expressing PrV glycoproteins gB, gC, gD, or gE under control of the major immediate-early promotor/enhancer of human cytomegalovirus. 12.5 microg per plasmid were used per immunization of 5-week old piglets which were injected three times at biweekly intervals. Five out of six animals survived a lethal challenge with strain NIA-3 without exhibiting central nervous signs, whereas all the control animals succumbed to the disease. This result shows the increased protection afforded by administration of the plasmid mixture over vaccination with a gC expressing plasmid alone. A comparative trial was performed using commercially available inactivated and modified-live vaccines and a mixture of plasmids expressing gB, gC, and gD. gE was omitted to conform with current eradication strategies based on gE-deleted vaccines. All six animals vaccinated with the live vaccine survived the lethal NIA-3 challenge without showing severe clinical signs. In contrast, five of six animals immunized with the inactivated vaccine died, as did two non-vaccinated controls. In this test, three of six animals vaccinated with the DNA vaccine survived without severe clinical signs, whereas three succumbed to the disease. Comparing weight reduction and virus excretion, the DNA vaccine also ranged between the inactivated and modified-live vaccines. Thus, administration of DNA constructs expressing different PrV glycoproteins was superior to an adjuvanted inactivated vaccine but less effective than an attenuated live vaccine in protection of pigs against PrV infection. Our data suggest a potential use of DNA vaccination in circumstances which do not allow administration of live attenuated vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号