首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
测定了痢疾杆菌福氏2a301株与喹诺酮类药物耐药性相关的gyrA基因和ParC基因的序列,并对其环丙沙星耐药诱变株的gyrA和ParC基因喹诺酮类药物耐药性决定区(QRDR)序列进行了测定分析。结果表明,痢疾杆菌福氏2a301株gyrA和ParC基因分别为2625bp和2256bp,环丙沙星诱导的耐药菌gyrA基因QRDR(245bp)发生氨基陵残基69—Ala→Val和87—Tyr→AsP改变,ParC基因QRDR(237b)发生氨基酸残基79—Ala→Asp、84—Ala→Glu和85—Pro→Ala改变。这一研究结果对认识痢疾杆菌喹诺酮类药物耐药性的分子机理具有重要意义。  相似文献   

2.
旨在了解猪链球菌对氟喹诺酮类药物耐药性与parC、gyrA基因突变的相关性,通过微量稀释法测定34株猪链球菌对4种氟喹诺酮类药物的MIC值,采用PCR方法扩增并测序分析了临床分离的猪链球菌对氟唪诺酮类约物10株耐药株和9株敏感株的parC和gyrA基因喹诺酮耐药决定区(QRDRs).在氟喹诺酮类药物耐药菌株parC基因QRDRs发生Ser79→Phe、Arg 87→Leu的氨基酸突变,在4株高度耐药菌株gyrA基因QRDRs发生Arg66→Ser,Ser81→Arg氨基酸突变;当菌株对氟喹诺酮类药物敏感时,parC和gyrA基因的QRDR区均未有突变;而当MIC≥32 μg·L-1 时,parC的氨基酸发生了 Ser79→Phe的突变,同时发生gyrA氨基酸Arg66→Ser,Set81→Arg突变.结果表明,猪链球菌对氟喹诺酮类药物低水平类耐药是由parC单一位点突变引起,而高水平耐药是由parC和gyrA双位点突变引起.  相似文献   

3.
用微量稀释法测定盐酸环丙沙星等5种氟喹诺酮类抗菌药物对20株耐氟喹诺酮类药物的动物源致病性大肠杆菌的最低抑菌浓度(MIC),PCR扩增gyrA基因的喹诺酮耐药决定区(quinolone resistance determining regions,QRDR),扩增的片断长度为496 bp,PCR产物直接测序,用DNAStar软件分析氨基酸序列。结果显示,盐酸环丙沙星、恩诺沙星、氧氟沙星、甲磺酸培氟沙星和烟酸诺氟沙星的MIC范围分别为64~>512μg/mL、16~256μg/mL、16~128μg/mL、64~>512μg/mL和64~>512μg/mL。gyrA基因的突变位点均位于83和87位氨基酸位点,主要的变异方式为Ser83→Leu(15/20),其次是Asp87→Asn(13/20),其他的为Asp87→Tyr(6/20),Ser83→Trp(4/20),Ser83→Ala(1/20)和Asp87→Gly(1/20)。说明试验用菌株对氟喹诺酮类药物均表现为多重耐药,其gyrA基因QRDR的突变表现为多种形式。  相似文献   

4.
为了解大肠杆菌对氟喹诺酮类药物的耐药机制和喹诺酮耐药决定区GyrA、GyrB、ParC、ParE四种基因的流行情况,采用聚合酶链式反应(PCR)技术对30株虎源大肠杆菌的耐药菌株进行了氟喹诺酮类药物耐药基因的检测,并对目的片段进行测序分析。结果表明:GyrA、GyrB、ParC、ParE阳性率分别为40.00%、63.33%、63.33%、40.00%;GyrA亚基发生Ser83→Leu、Asp87→Asn、Glu214→Gly的突变,GyrB亚基发生Ser195→Asn的突变,ParC亚基上氨基酸未发生取代,ParE亚基发生Ser85→Ala的突变。说明GyrA、GyrB亚基上发生的氨基酸替代是耐药菌对氟喹诺酮类药物产生耐药性的主要机制之一。  相似文献   

5.
为了解动物源大肠埃希菌对氟喹诺酮类药物的耐药情况及其与gyrA基因突变的联系,采用微量肉汤稀释法测定200株猪鸡源大肠埃希菌对恩诺沙星和氧氟沙星的最低抑菌浓度(MIC);对大肠埃希菌的gyrA基因片段进行PCR扩增,产物进行变性高效液相色谱(DHPLC)检测和序列测定。结果表明,200株动物源大肠埃希菌对恩诺沙星和氧氟沙星的耐药率分别为44.5%和41.0%;144株大肠埃希菌gyrA基因产物的DHPLC图谱有异常峰型,即核苷酸突变率为72.0%;测序证实gyrA基因存在5个突变位点,其中2个位点的突变可导致Ser83→Leu和Asp87→Asn/Tyr,突变率分别为54.0%和24.0%,其余3个位点为同义突变点;结合恩诺沙星耐药情况可知,敏感菌株gyrA基因的氨基酸突变率最低(18.5%),其次为中介菌株(56.5%),耐药菌株最高(78.6%),氧氟沙星测试结果与此趋势一致。由此可知动物源大肠埃希菌gyrA基因突变引起的氨基酸替代与氟喹诺酮耐药高度相关。  相似文献   

6.
通过微量稀释法测定28株猪源链球菌对环丙沙星的MIC值,研究东北地区猪源链球菌对环丙沙星耐药性与parC、gyrA基因突变的相关性.通过PCR方法扩增parC和gyrA基因喹诺酮耐药决定区(QRDR)并测序分析;18株耐药菌在parC基因80位的突变(AGC→ATT)导致氨基酸Ser→Ile突变,11株高度耐药菌在gyrA基因81位的突变(CAG→)CAT、CTT或CTA)导致氨基酸Ser→Ile、Phe或Tyr的突变.当菌株对环丙沙星的MIC值≤1μ/mL时,parC和gyrA基因的QRDR区均未有突变;而当MIC ≥2μg/mL时,ParC的氨基酸发生了Ser80→Ile的突变,同时发生GyrA氨基酸Ser81突变的菌株,耐药水平很高.研究表明,环丙沙星低水平类耐药是由于拓扑异构酶Ⅳ改变引起,而高水平耐药是由拓扑异构酶Ⅳ、DNA旋转酶共同改变引起的.实验结果证明,在一定条件下,耐药性的高低与突变位点的多少成正比.  相似文献   

7.
按常规方法提取鸡毒霉形体3株临床分离株和参考株(S6-10)的基因组DNA,扩增各菌株DNA旋转酶gyrA基因片段,并克隆、测序,用DNAsis软件对测序结果进行分析。结果表明,HS1、HS2株均在GyrA亚基第87位发生了Glu87→Gly氨基酸取代,除此之外,耐药水平较高的HS2株还在第83位发生了Ser83→Ile氨基酸取代,而FL分离株虽对氟喹诺酮类药物产生了低水平耐药,但在GyrA亚基未发生任何氨基酸突变。  相似文献   

8.
探讨不同禽源大肠埃希菌中喹诺酮类药物的耐药情况及耐药基因gyrA的分布和突变特征。采用K-B药敏纸片法、gyrA基因的PCR扩增,对9株大肠埃希菌进行喹诺酮类药物试验,并将gyrA基因的PCR产物测序,对测序结果采用DNA MAN、DNA Star、MEGA6等软件分析。药敏试验结果表明,C1、C2、C3菌株对左氧沙星、氧氟沙星、环丙沙星、诺氟沙星敏感,D1、D2、D3、B1、B2和B3菌株对左氧沙星、氧氟沙星、环丙沙星、诺氟沙星均表现为耐药和中介;gyrA基因的测序结果表明,除B1菌株有1处核苷酸突变位点和B2菌株有14处核苷酸突变位点;B2菌株gyrA基因的氨基酸突变发生在87位Ile→Val替代、101位Leu→Met替代、102位Ala→Ser替代、129位Lys→Gln替代。9株禽源大肠埃希菌的同源性和进化树分析表明,不同禽源耐氟喹诺酮类药物的大肠埃希菌菌株中B2菌株gyrA基因与其他9株菌株相比,同源性在90%左右,进化树不在一个分支上,研究中的B2菌株将为大肠埃希菌的氟喹诺酮类耐药机制的研究提供候选菌株。  相似文献   

9.
按常规方法提取鸡毒支原体参考株(S6-10)、疫苗株(F14-6)及在氟喹诺酮类药物压力下体外筛选出来的耐药株的基因组DNA,扩增各菌株DNA旋转酶gyrA基因片段,并克隆、测序,利用DNASIS分析软件对测序结果进行分析。结果表明,S6-10和F14-6在恩诺沙星或环丙沙星压力下均筛选出不同程度的耐药菌,而且恩诺沙星致鸡毒支原体发生耐药性突变的机率高于环丙沙星,S6-10株耐药突变频率高于F14-6。S6-10筛选出来的耐药菌株发生突变的位置在DNA旋转酶gyrA亚基的第83位(相对于大肠杆菌gyrA亚基中的位置,以下同)和87位上,取代模式为Ser83→Ile、Glu87→Gln,高水平耐药株(Se32M,MIC≥128)除了在第83位发生突变外,在第82位还增加一突变位点(Asp→Gly);F14-6筛选出来的高水平耐药菌株(Fe32M)在DNA旋转酶gyrA亚基的第83、87位发生了双位点突变(Ser83→Ile,Glu87→Gly),而低水平耐药株(Fe8M、Fc8M)在gyrA亚基未发生任何位点突变。  相似文献   

10.
嗜水气单胞菌gyrA氟喹诺酮抗性决定区的克隆与分析   总被引:1,自引:0,他引:1  
研究了从病鱼体内分离的嗜水气单胞菌对氟喹诺酮类药物耐药性的分子机理。以4株对诺氟沙星等氟喹诺酮类药物耐药菌株及2株敏感菌株为模板,参照杀鲑气单胞菌gyrA基因序列,设计了1对引物,进行gyrA基因氟喹诺酮抗性决定区PCR扩增,将扩增产物克隆入pMD18-T载体,转化入大肠埃希氏菌DH5α中,小提质粒,酶切鉴定,测序并分析比较耐药菌和敏感菌的氨基酸残基序列。发现耐药菌有5个氨基酸突变位点,分别是83位点的Ser→Ile,92位点的Leu→Met,174位点的Ile→Phe,202位点的Asn→Asp,203位点的Leu→Arg,耐药菌突变后的氨基酸残基均比敏感菌正常的相对应氨基酸残基分子量大。83位点的突变与大肠埃希氏菌的耐药性突变一致。122位点具有保守的Try。  相似文献   

11.
15株动物源性耐氟喹诺酮类药物大肠杆菌进行PCR检测、测序、WDNASIS软件分析gyrA基因中的氟喹诺酮耐药决定区(QRDR)、AcrA以及编码与质粒介导的氟喹诺酮类药物耐药机制相关的qnrA、qnrB、qnrS、qepA和aac(6′)-Ib-cr基因。结果表明,15株耐药菌中,QRDR基因在其编码第72、75、83位或第87位氨基酸均发生突变;AcrA基因未检测到氨基酸的突变;qnrS、qepA和aac(6′)-Ib-cr耐药基因阳性菌各检测到1株,序列分析表明不存在氨基酸突变。QRDR基因编码的氨基酸4个位点发生突变,其中Ser83→Leu和Asp87→Asn 2个基因的突变均与文献报道的突变相同,双突变的7个菌株均表现为高度耐氟喹诺酮类抗生素,表明gyrA基因为大肠杆菌耐氟喹诺酮类抗生素的一个重要机制。高度耐氟喹诺酮类抗生素的菌株中有2株没有检测到氨基酸突变的存在,但是aac-(6′)-Ib-cr基因和qnrS检测为阳性,表明质粒介导的喹诺酮类耐药也可单独导致菌株的耐药。存有一个菌株gyrA基因编码的氨基酸发生突变Ser83→Leu,AcrA基因和qnrA、qnrB、qnrS、qepA和aac(6′...  相似文献   

12.
猪源大肠杆菌质粒和染色体介导的喹诺酮类药的耐药机制   总被引:3,自引:0,他引:3  
采用微量肉汤稀释法对31株猪源大肠杆菌进行6种喹诺酮类药物的敏感性测定,聚合酶链式反应检测质粒介导的喹诺酮类耐药(PMQR)基因qnr、qepA和aac(6′)-Ib-cr,并分析PMQR基因阳性菌株染色体gyrA、gyrB、parC、parE基因的喹诺酮耐药决定突变区(QRDRs)突变。结果显示,31株猪源大肠杆菌对兽医临床常用的氟喹诺酮类药物均呈现耐药。在31株猪源肠杆菌中共检测到2株携带qnrB10和4株携带qnrS1基因的大肠杆菌,未检测到qnrA、qepA和aac(6′)-Ib-cr。在PMQR阳性菌株gyrA基因的QRDRs中,低耐药菌株的gyrA基因出现83位S→W突变,高耐药菌株的gyrA基因同时出现83位S→L和87位D→N突变。而在parC基因的QRDRs中,大部分耐药菌株出现80位S→I突变,1株耐药菌株出现45位V→L突变。gyrB和parE基因的QRDRs未检测到突变。结果表明,本地区猪源大肠杆菌对兽医临床常用的氟喹诺酮类药物耐药严重,PMQR的出现和QRDRs的点突变可同时协同贡献对喹诺酮类耐药,而PMQR的出现加速了喹诺酮类耐药基因的快速传播。  相似文献   

13.
按常规方法提取了鸡毒霉形体参考株S6-10、疫苗株F14-8及在氟喹诺酮类药物压力下筛选出来的耐药株的基因组DNA,扩增了各菌株DNA旋转酶gyrA基因片段,并进行了克隆、测序,利用DNAsis软件对测序结果进行分析。结果表明,S6-10和F14-8在恩诺沙星或环丙沙星压力下均筛选出不同程度的耐药茵,而且恩诺沙星致鸡毒霉形体发生耐药性突变的几率高于环丙沙星,S6-10株耐药突变频率高于F14-8;S6-10筛选出来的耐药菌株发生突变的位置在DNA旋转酶GyrA亚基的第83位(相对于大肠埃希氏茵GyrA亚基中的位置,以下同)和第87位上,取代模式分别为Ser→Ile、Glu→Gln,另外1株高水平耐药株(Se10,MIC≥128)在第103位也发生了氨基酸取代(Ile→Val);F14-8筛选出来的耐药菌株只在DNA旋转酶GyrA亚基的第87位发生了突变(Glu→Gly/Gln)。  相似文献   

14.
《中国兽医学报》2017,(7):1283-1287
以2014-2015年从我国部分省市规模化养殖场中分离的55株沙门菌为对象,选取临床常用的12种抗菌药,用微量肉汤稀释法检测所分离的沙门菌的耐药性。结果显示:测试的12种药物中沙门菌对甲氧苄啶最敏感,耐药率只有1.82%,除此之外对其他11种药物的耐药率均在50%以上,而且对其中的氨苄西林、氟苯尼考、多西环素和四环素等4大类共计7种药物的耐药率在80%以上;在多重耐药性分析方面,1株沙门菌对所有药物完全敏感,另外54株菌的药物耐受数量在5种到11种之间,其中耐受10种药物是所有沙门菌中最大的一类菌株,占总数的30.91%。根据菌株的耐药特点,设计了23对包含各类药物主要耐药基因的引物,用PCR法检测相应耐药菌株对该耐药基因的携带情况,一共检测出了15种耐药基因,其中检出率最高的几种基因分别是sul2基因(检出率78.43%)、sul1基因(检出率60.78%)和tet A基因(检出率72.55%)等。此外,对于耐受喹诺酮类药物的菌株还检测了其耐药决定区域基因gyrA和parC所编码氨基酸的突变情况。测序结果表明,gyrA基因所编码氨基酸序列的第83个位点和第87个位点发生了突变,分别由酪氨酸变成了丝氨酸或亮氨酸、苯丙氨酸,由天冬氨酸变成了天冬酰胺或酪氨酸,parC基因所编码氨基酸序列没有发现突变的情况。  相似文献   

15.
取临床分离的、对5种氟喹诺酮类药物(环丙沙星、氧氟沙星、恩诺沙星、单诺沙星和沙拉沙星)均耐药的9株鸡源性沙门氏菌耐药株,提取其染色体DNA。设计引物gyrAF和gyrAR、gyrBF和gyrBR,分别扩增菌株DNA旋转酶gyrA基因和gyrB基因的氟喹诺酮类耐药决定区(QRDR),对PCR扩增产物进行测序及序列分析。与质控菌株相比,9株临床分离耐药株中只有菌株38和60的gyrA基因发生单碱基突变,菌株38的gyrA基因第371位碱基发生C→T突变,菌株60的gyrA基因第350位碱基发生A→C突变,两处突变均位于QRDR内,其余菌株的核苷酸未发生任何突变。菌株38的碱基突变导致gyrA基因第99位氨基酸发生R→C取代,即Arg→Cys;菌株60的碱基突变导致gyrA基因第92位氨基酸发生M→L取代,即Met→Leu。9株临床分离鸡源性沙门氏菌氟喹诺酮类耐药株gyrB基因QRDR的核苷酸序列与质控菌株完全相同;只有菌株42的gyrB基因第1592位碱基发生C→A突变,但其位于gyrB基因QRDR之外,且菌株42的gyrB基因的碱基突变并没有导致相应氨基酸的改变。上述结果提示,DNA旋转酶gyrA基因和gyrB基因QRDR突变可能并非沙门氏菌耐药性产生的主要原因。  相似文献   

16.
用微量肉汤稀释法对180株鸡源大肠杆菌临床分离株进行了6种氟喹诺酮类药物的耐药性监测,大多数分离株对氟喹诺酮类药物表现出高耐药率(52.9%~93.30%)并呈多重耐药性。提取各菌株染色体DNA,对gyrA基因QRDR进行PCR扩增并测序。氨基序列分析结果显示:168株耐药菌株的第83位的氨基酸均发生了变异,由丝氨酸(S)变为亮氨酸(L);对4种以上氟喹诺酮类药物有耐药性的107株分离株除第83位氨基酸发变异外,第87位氨基酸也发生了变异,88株由天冬氨酸(D)变为天冬酰氨(N),13株为酪氨酸(Y),5株变为甘氨酸(G),1株变为丙氨酸(A),由此表明鸡源大肠杆菌对氟喹诺类药物的耐药程度与gyrA基因QRDR的变异密切相关,第83位氨基酸变异是大肠杆菌现对氟喹诺酮类药物耐药的关键。  相似文献   

17.
采用二倍稀释法测定临床分离的4株鸡毒支原体对常用抗菌药物的敏感性,PCR方法和基因测序法对鸡毒支原体DNA回旋酶编码基因gyrA、gyrB及拓扑异构酶Ⅳ编码基因parC和parE耐药决定区进行分析。敏感性测定结果表明,4株分离鸡毒支原体对泰乐菌素、泰妙林、沃尼妙林和替米考星有很高的敏感性,对四环素和红霉素中度敏感,对林可霉素、氟苯尼考和氟喹诺酮类药物呈现不同程度的耐药性。4株耐氟喹诺酮类药物鸡毒支原体均在GyrA和ParC的喹诺酮类耐药决定区(QRDR)发生氨基酸的改变,GyrA的氨基酸取代模式有两种,分别为Ser81→Gly和Ser83→Ile,ParC仅在80位发生氨基酸取代(Ser80→Leu),GyrB和ParE均未发生氨基酸改变。  相似文献   

18.
为了探讨在环丙沙星(ciprofloxacin,CIP)药物培养后,多杀性巴氏杆菌(Pasteurella multocida,Pm)对CIP的药物敏感性变化及其耐药机制,试验采用体外递增药物浓度的方法诱导出禽源Pm标准株C48-1对CIP的耐药菌株,并对CIP耐药菌株的最小抑菌浓度(MIC)值变化及耐药稳定性、生化特性、生长曲线和基因组位点突变进行了研究。结果表明:诱导的CIP耐药菌株的MIC由0.25μg/mL上升至16μg/mL;与亲本株比较,生化特性与生长曲线无显著差异,但诱导株的喹诺酮类耐药决定区(QRDR)gyrA基因编码的氨基酸发生了Thr99→Ala的变化,该位点突变首次发现,gyrB、parC、parE耐药基因均未发生变化。说明逐步递增药物浓度可以诱导禽源Pm对氟喹诺酮类药物的耐药性,并导致靶基因发生突变。  相似文献   

19.
对河南省猪产业链中分离的28株耐头孢菌素沙门菌进行血清学分型、药敏试验和超广谱β-内酰胺酶(ESBLs)筛查,并进一步采用PCR扩增和DNA测序检测β-内酰胺基因、喹诺酮类耐药基因以及喹诺酮类耐药决定区(QRDR)氨基酸突变。结果显示,河南省猪产业链中耐头孢菌素沙门菌的流行率为0.89%(28/3 137),其中肝脏样品流行率最高(4.98%,16/321);28株检测菌,共分为7种血清型,主要血清型为印第安纳(46.43%,n=13)和单相鼠伤寒变种(25%,n=7)。所有菌株除了黏杆菌素,对其他11种药物耐药率均高于60%,多重耐药率为100%;至少携带1种β-内酰胺酶基因,携带率最高的基因是blaCTX-M(89.29%,n=25),共携带有6种组合的β-内酰胺酶基因谱;共检测到4种喹诺酮类耐药基因(aac(6)-Ib-cr、oqxAB、qnrS和qnrC),gyrB和parE均无氨基酸突变,其中15株菌同时发生gyrA(Ser83Phe与Asp87Asn/Gly)突变和parC(Thr57Ser与Ser80Ile/Arg)突变,无论是否存在喹诺酮耐药基因,对环丙沙星均呈高水平的...  相似文献   

20.
为研究猪链球菌2型(S.suis2)对氟喹诺酮类药物的耐药机制,本研究采用PCR和基因测序的方法分析氟喹诺酮类药物耐药诱导菌株的gyrA和parC喹诺酮耐药决定区(QRDR).与亲本药物敏感菌株和自然耐药菌株相应的氨基酸序列对比,所有耐药诱导菌株GyrA QRDR均无特征性的氨基酸变异;而有62.5%耐药诱导菌株(5/8)的ParC QRDR在第83位氨基酸突变为赖氨酸.应用质子能驱动型外排泵抑制剂氰氯苯腙(CCCP)与氟喹诺酮类药物联合用药后,CCCP可以使耐药诱导菌株对药物的敏感性提高8倍~32倍.交叉耐药性结果显示,耐药诱导菌株获得了氟喹诺酮类药物交叉耐药.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号