首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
【目的】 利用腺病毒AdMax系统表达载体表达猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)核衣壳蛋白(nucleocapsid protein),并研究其免疫原性。【方法】 参考GenBank中已公布的PRRSV N基因序列(登录号:KT945017.1),人工合成PRRSV N基因,并将其连接至腺病毒穿梭载体pDC316-mCMV-EGFP,转化大肠杆菌Top10感受态细胞,构建重组穿梭质粒pDC316-N。将重组穿梭质粒pDC316-N与AdMax腺病毒系统的骨架质粒PBHGLOX (delta) E1,3Cre共同转染293A细胞,获得重组腺病毒rAd-N,对获得的重组腺病毒液进行PCR和测序鉴定,用鉴定正确的rAd-N病毒液感染293A细胞,对该重组腺病毒进行扩大培养,检测病毒的TCID50,并用RT-PCR和Western blotting检测重组腺病毒的表达和反应原性。用重组腺病毒免疫小鼠,收集血清用PRRSV抗体检测试剂盒检测其抗体水平,初步评价其对小鼠的免疫效果。【结果】 PCR扩增出1条大小为400 bp的PRRSV N基因条带,测序结果正确,表明重组腺病毒构建成功,浓缩后测得其半数组织培养感染剂量(TCID50)为10-10.239。RT-PCR和Western blotting检测结果证实目的基因在基因和蛋白水平上均可得到正确表达,蛋白分子质量约为14 ku。小鼠特异性抗体检测表明,重组腺病毒rAd-N免疫小鼠后可使小鼠快速产生PRRSV特异性抗体,与对照组差异显著(P<0.05),其中重组腺病毒与Gel佐剂配合使用时效果最好,最高可达7.84 U/L。【结论】 本研究成功构建表达PRRSV N蛋白的重组腺病毒,其具有良好的免疫原性,为建立针对PRRSV抗体的间接ELISA检测方法和进一步研发PRRSV抗体检测试剂盒奠定基础。  相似文献   

2.
试验旨在构建表达猪附红细胞体ENO基因的重组腺病毒并分析评价其免疫效果。将重组克隆质粒pMD-19T-ENO与腺病毒穿梭载体AdV4-GFP分别进行双酶切,构建重组腺病毒穿梭质粒AdV4-M/ENO;将经PacⅠ酶线性化后的重组腺病毒穿梭质粒AdV4-M/ENO转染293细胞,获得重组腺病毒Ad4-M/ENO,采用PCR和间接免疫荧光试验(IFTA)鉴定猪附红细胞体ENO基因在293细胞中的表达,再对293细胞进行培养,测定重组腺病毒的滴度;将30只BALB/c小鼠分为3组:重组腺病毒Ad4-M/ENO组、AdV4-GFP空载体对照组和PBS对照组,分别进行免疫接种,采用ELISA方法检测血清中猪附红细胞体IgG、IgG1、IgG2a抗体水平和IFN-γ、IL-4细胞因子水平,在三免2周后检测小鼠脾脏中CD4+和CD8+含量。结果显示,构建的重组腺病毒穿梭质粒AdV4-M/ENO目的基因片段大小为1 182 bp;重组腺病毒Ad4-M/ENO包装成功,能在293细胞中表达,滴度为1×109 PFU/mL。经重组腺病毒Ad4-M/ENO免疫后的BALB/c小鼠血清中IgG、IgG1、IgG2a抗体水平,IFN-γ、IL-4细胞因子水平及淋巴细胞亚群CD4+、CD8+含量均显著或极显著高于AdV4-GFP空载体对照组和PBS对照组(P<0.05;P<0.01)。结果表明,本试验成功构建了表达猪附红细胞体ENO基因的重组腺病毒,且该重组腺病毒能诱导小鼠产生特异性的体液免疫和细胞免疫应答反应。  相似文献   

3.
为探讨禽腺病毒4型分离株Y17215-1的体外增殖特性和免疫原性,本研究以LMH细胞为模型,摸索Y17215-1株最佳接种剂量和收获时间;通过活毒滴鼻接种和灭活疫苗肌肉注射的方式免疫SPF鸡,测定其免疫原性。结果显示:Y17215-1株0.1 MOI接种LMH细胞,培养48~72 h病毒滴度达到峰值108.625 TCID50/mL。该病毒经肌肉注射对42日龄SPF鸡具有较强致病性,LD50为103.000 TCID50/0.2 mL。以107.676 TCID50的Y17215-1株滴鼻免疫21日龄SPF鸡,免疫后7 d 100%试验鸡产生中和抗体,14 d达到高峰。以Y17215-1株制备灭活疫苗肌肉注射免疫21日龄SPF鸡(107.676 TCID50/羽),免疫后7 d 70%试验鸡产生中和抗体,21 d达到高峰。在免疫后21 d用1000LD50的Y17215...  相似文献   

4.
基于总物质量和多糖含量比较栽培/野生一枝蒿粗多糖(cultivated/wild Artemisia rupestris L.crude polysaccharides,CARCP/WARCP)作为口蹄疫灭活疫苗(foot-and-mouth disease inactivated vaccine,FMDV)佐剂对小鼠抗体水平及T细胞亚群的影响,探究CARCP/WARCP的佐剂活性和安全性。CARCP/WARCP配伍FMDV肌肉途径免疫ICR小鼠,检测免疫后小鼠血清中FMDV特异性抗体及分型,脾中T细胞亚群比例,血清中IgE水平,观察临床症状和注射部位反应以及小鼠体重。结果显示,总物质量一致时,CARCP1/WARCP1均能极显著提高FMDV特异性IgG、IgG2a反应(P<0.01),极显著促进脾T细胞CD3+CD4+、CD4+CD44+、CD8+CD44+CD62L+百分比(P<0.05),显著提高IgG1、IgG2a/IgG1比值,显著促进CD3+CD8+、CD8+CD44+、CD8+CD44+CD62L-比例(P<0.05),且除28 d IgG和IgG1指标外,CARCP1的佐剂活性显著高于WARCP1(P<0.05)。多糖含量一致时,与FMDV相比,CARCP2/WARCP2均极显著增强了28 d IgG水平、IgG2a/IgG1比值(P<0.01),显著提高了21 d IgG、28 d IgG2a及CD4+CD44+P<0.05),且CARCP2/WARCP2之间差异不显著(P>0.05)。CARCP/WARCP没有引起小鼠脱毛等临床症状,也没有产生肉芽肿、肿胀等注射部位不良反应;CARCP/WARCP免疫后各组小鼠体重之间差异不显著(P>0.05);各组小鼠血清均没有检测到IgE抗体(P>0.05);这些结果表明CARCP/WARCP有一定的安全性。综上,当总物质量一致时,CARCP/WARCP均能增强FMDV免疫小鼠体液和细胞免疫反应,且CARCP的佐剂活性优于WARCP;多糖含量一致时,CARCP/WARCP作为FMDV佐剂的免疫增强效果相当,是安全佐剂候选物。  相似文献   

5.
为研究表达猪源粒细胞-巨噬细胞集落刺激因子(GM-CSF)的重组猪繁殖与呼吸综合征病毒(PRRSV)在动物体内的免疫调节特性及对其的保护效力评价,本研究将15头30日龄仔猪随机分成4组,空白对照组(DMEM)4头、疫苗对照组(HuN4-F112株)4头、疫苗组(rPRRSV-GM-CSF株)3头和攻毒对照组(DMEM+HuN4株)4头。疫苗对照组肌注免疫HuN4-F112株105 TCID50/头、疫苗组肌注免疫rPRRSV-GM-CSF株105 TCID50/头,实验空白组和攻毒对照组肌注DMEM 2 mL/头,免疫后28 d,疫苗组、疫苗对照组和攻毒对照组肌注HuN4株(105 TCID50/头)。攻毒后的试验结果表明,免疫rPRRSV-GM-CSF重组病毒组和疫苗株HuN4-F112组获得完全保护,阴性对照组全部死亡;通过IDEXX试剂盒检测仔猪血清中PRRSV抗体水平可知,在免疫14 d后,疫苗组抗体水平显著高于疫苗对照组(P<0.05);由...  相似文献   

6.
为了评价猪附红细胞体eno基因重组腺病毒疫苗(Ad5-M/eno重组腺病毒疫苗)对仔猪的免疫效果,试验将12头仔猪随机分为3组,分别为Ad5-M/eno重组腺病毒疫苗组、重组空载体腺病毒组和PBS对照组,分别于3组仔猪的颈部肌肉注射Ad5-M/eno重组腺病毒疫苗(浓度为1×1010 pfu/mL)、空载体重组腺病毒(浓度为1×1010 pfu/mL)和PBS各2.5 mL,于试验第0,21天分两次免疫。第2次免疫后第14天,麻醉后手术切除仔猪脾脏,采用密度梯度离心法提取猪脾脏淋巴细胞,利用流式细胞仪检测仔猪CD3+、CD4+和CD8+ T淋巴细胞含量。于第1次免疫前(第0天)及免疫后第7,14,21,28,35,42,49天无菌采集各组试验猪的颈静脉血,分离血清,检测每组仔猪抗猪附红细胞体特异性抗体IgG效价及IgG1、IgG2a和细胞因子白细胞介素-4(IL-4)、γ干扰素(IFN-γ)水平,评价Ad5-M/eno重组腺病毒疫苗对...  相似文献   

7.
旨在探讨新疆野生荒漠肉苁蓉醇提物(ethanol extracts of wild Cistanche deserticola,EEWCD)调节Th1/Th2免疫反应的特点及初步的作用机制。采用卵清白蛋白(ovalbumin,OVA)为抗原,研究EEWCD对小鼠体液免疫,细胞免疫,细胞因子分泌,树突状细胞(dendritic cells,DCs)的成熟和调节性T细胞(regulatory T cell,Treg)等的影响。EEWCD低、中、高剂量(分别记作L、M、H)分别与OVA混合,ICR小鼠随机分为0.9% NaCl、EEWCD、OVA、OVA-EEWCD-L、OVA-EEWCD-M、OVA-EEWCD-H和OVA-铝佐剂免疫组。皮下免疫2次,间隔2周。小鼠免疫后,ELISA法检测抗体滴度及分型,MTT检测脾细胞增殖水平,FACS检测CD4+ IL-4、CD4+IFN-γ和CD8+ IFN-γ的水平,以及DCs表面分子与Treg表达水平。结果显示,EEWCD提高了OVA特异性IgG抗体2~3倍;在初次免疫后21 d显著促进IgG1和IgG2a的表达水平(P<0.05);显著促进OVA特异性脾细胞增殖以及T/B细胞的活化(P<0.05);显著促进CD4+ IL-4、CD4+ IFN-γ和CD8+ IFN-γ的分泌(P<0.05)。同时,EEWCD也显著促进了DCs的CD40、CD80、CD86和MHCⅡ的表达(P<0.05),下调了Treg的水平(P<0.05)。EEWCD-M为最佳剂量。监测免疫后小鼠行为及体重,小鼠行为没有异常,且同一时间点各组体重之间差异不显著(P>0.05)。综上表明,EEWCD能够促进OVA特异性的Th1/Th2免疫反应,尤其促进Th1型反应,具有良好的免疫调节活性,其作用机制可能为通过激活DCs的成熟,促进IL-4和IFN-γ的分泌,降低Treg的水平调节Th1/Th2免疫反应的动态平衡。  相似文献   

8.
旨在构建表达猪圆环病毒2型(PCV2)cap蛋白的重组罗伊氏乳酸杆菌(Lactobacillus reuteri,L.reuteri),并评价其在小鼠体内诱导的免疫应答效果。利用PCR扩增实验室分离保存的PCV2b型毒株的cap蛋白基因,以猪源L.reuteri为宿主菌,构建表达cap蛋白的重组菌株pPG-T7 g10-PPT-cap/L.reuteri,通过口服免疫BALB/c小鼠。采用间接ELISA方法测定免疫后小鼠血清中抗原特异性IgG抗体水平,粪便、鼻腔洗液、生殖道洗液、肠黏液中抗原特异性sIgA抗体水平,小鼠血清中各细胞因子水平;MTT法检测小鼠脾淋巴细胞增殖水平;流式细胞技术检测小鼠脾淋巴细胞中CD4+T细胞、CD8+T细胞的水平;荧光定量PCR检测免疫后攻毒的小鼠体内器官的病毒载量。结果显示,口服免疫重组乳酸菌组小鼠血清IgG抗体水平显著高于对照组(P<0.01);小鼠粪便、鼻腔洗液、生殖道洗液、肠黏液中sIgA抗体水平显著高于对照组(P<0.01);小鼠血清中细胞因子水平和对照组相比,IFN-γ、IL-2、IL-4、IL-12水平升高,IL-10水平降低,IFN-α无显著变化;体外孵育PCV2和小鼠脾淋巴细胞结果表明,重组乳酸菌组小鼠脾淋巴细胞增殖刺激指数显著高于对照组(P<0.01);流式细胞技术检测结果显示,口服免疫重组乳酸菌组小鼠脾细胞中CD4+T细胞、CD8+T细胞含量高于对照组;荧光定量PCR结果显示,相比于对照组,口服免疫重组乳酸菌组小鼠体内的病毒载量明显低于对照组。综上所述,本研究成功构建了表达PCV2 cap蛋白的重组罗伊氏乳酸杆菌,经口服途径免疫动物,构建的重组乳酸杆菌能够刺激小鼠产生体液免疫和细胞免疫应答,且具有一定的免疫保护效果。  相似文献   

9.
【目的】 探究由霍乱弧菌菌影(Vibrio cholerae ghosts,VCG)和纳米壳聚糖凝胶(Gel)组合制作的一种新型灭活衣原体疫苗复合佐剂是否可增强鹦鹉热衣原体原体(elementary body,EB)灭活抗原诱导动物机体产生的免疫应答。【方法】 将60只7日龄SPF鸡随机分为4个组,分别为:EB+VCG+Gel组、EB+VCG 组、Gel组和EB组。通过滴鼻途径免疫鸡群,免疫2次,每次间隔14 d,免疫后检测鸡血清中IgG抗体水平、淋巴细胞增殖指数、CD4/CD8T 细胞比例、细胞因子(白介素-4(IL-4)、IL-10、IL-12和干扰素-γ(IFN-γ))含量及攻毒后鸡喉头排菌量和肺脏的病理损伤程度。【结果】 与Gel和EB组相比,EB+VCG+Gel和EB+VCG组IgG 抗体水平、淋巴细胞增殖指数、IFN-γ含量和CD4/CD8T细胞比值显著或极显著升高(P<0.05;P<0.01)。此外,与Gel和EB组相比,攻毒后第12天,EB+VCG+Gel组喉头排菌量极显著降低(P<0.01),攻毒后第7天,肺脏损伤评分极显著降低(P<0.01)。【结论】 壳聚糖凝胶、VCG、灭活衣原体 EB 组合构成的新型滴鼻衣原体疫苗经鼻腔接种动物后可刺激动物机体产生良好的体液免疫和细胞免疫应答,阻断鹦鹉热衣原体经呼吸道途径传播,防止鹦鹉热衣原体从动物向人群传播。  相似文献   

10.
【目的】 研究牛病毒性腹泻病毒(Bovine viral diarrhea virus,BVDV)E0和E2串联基因重组腺病毒作为基因工程疫苗的应用潜力。【方法】 采用PCR扩增、E0-E2基因融合并构建重组穿梭质粒pDC316-E0-E2,将其与AdMax腺病毒系统的骨架质粒共转染HEK293T细胞包装成重组腺病毒,通过Western blotting进行验证,并通过Reed-Muench法测定病毒滴度,通过肌内、皮下免疫接种小鼠后用ELISA方法及流式细胞检测进行免疫效果试验。【结果】 成功扩增到E0、E2基因目的片段,大小分别为681和1 122 bp,得到了完整的腺病毒Ad5-E0-E2;测定其滴度为1.1×1010 PFU/mL;Western blotting检测结果显示,Ad5-E0-E2外源基因在HEK293T细胞中表达,得到了与预期相符的目的条带(65 ku);ELISA检测结果表明,通过肌内和皮下注射Ad5-E0-E2均能产生较高的抗体水平;流式细胞检测显示首免、二免后肌内和皮下注射Ad5-E0-E2组CD4、CD4/CD8比值均极显著高于PBS对照组(P<0.01)。【结论】 本试验成功构建重组腺病毒Ad5-E0-E2,且具有较好的反应原性和免疫原性,能诱导机体产生针对BVDV的特异性抗体。  相似文献   

11.
【目的】 研究针对新城疫病毒(Newcastle disease virus, NDV)和禽腺病毒(Fowl adenovirus, FAdV)的耐热基因工程疫苗。【方法】 利用反向遗传学操作技术将NDV耐热株的HN基因替换到LaSota疫苗株上, 再将禽腺病毒血清4型(Fowl adenovirus serotype 4, FAdV-4)的Fiber2基因插入到其基因组上, 构建表达Fiber2蛋白的重组耐热NDV质粒pTS-HN-Fiber2。通过病毒拯救技术拯救重组NDV rTS-HN-Fiber2, 并测定其生物学特性和作为疫苗候选株的免疫原性和攻毒保护性。【结果】 rTS-HN-Fiber2的鸡胚平均致死时间>168 h, 且脑内接种致病指数为0, 属于弱毒的范畴; 在细胞上的生长曲线结果表明, rTS-HN-Fiber2与亲本LaSota株有相似的生长曲线, 但最终的生长滴度略低于LaSota株; rTS-HN-Fiber2在56 ℃处理15 min后, 病毒滴度下降约103 TCID50/mL, 而LaSota株56 ℃处理5 min几乎无感染性; 间接免疫荧光试验结果表明, rTS-HN-Fiber2能表达Fiber2蛋白。免疫和攻毒试验结果显示, rTS-HN-Fiber2能产生NDV抗体, 且能显著提高雏鸡在FAdV-4强毒下的存活率, 减轻FAdV-4强毒引起的组织病变, 降低组织中的病毒载量。【结论】 本研究成功构建了表达FAdV-4 Fiber2蛋白的重组耐热NDV, 该病毒保持了亲本LaSota株的弱毒生物学特性, 但热稳定性有显著提升; 重组NDV免疫雏鸡可产生针对NDV和FAdV-4强毒的保护, 该重组NDV可作为开发针对FAdV-4和NDV二联基因工程疫苗的候选病毒株。  相似文献   

12.
本试验旨在研究携带铜绿假单胞菌保护性抗原基因F190-342(F1)和I21-83(I2)的重组鼠伤寒沙门菌株ΔasdLH430(pYA-F1I2)在水貂上的免疫原性。将9只7月龄健康水貂随机分为3组,每组3只:对照组,皮下注射无菌生理盐水;LH430菌株免疫组,皮下注射菌株2.0×108 CFU/只;ΔasdLH430(pYA-F1I2)菌株免疫组,皮下注射菌株2.0×108 CFU/只。首免后第15天各组加强免疫一次。分别于第1次免疫后第15、30及45天断指采集水貂血液,测定血清中IgG水平。在第1次免疫后第45天分离外周血单核细胞,Eli-Spot检测F1I2特异性抗体分泌细胞数量和沙门菌特异性抗体分泌细胞数量。同时,取脾脏分离淋巴细胞,MTT法检测F1I2和沙门菌特异性的淋巴细胞增殖情况。结果表明,ΔasdLH430(pYA-F1I2)组血清中F1I2特异性IgG抗体和沙门菌特异性IgG抗体滴度在取样点逐渐升高,同时在第45天达到最大值;免疫后第45天,ΔasdLH430(pYA-F1I2)组F1I2特异性IgG分泌细胞的数量极显著高于对照组及LH430组(P < 0.01),沙门菌特异性抗体分泌细胞的数量极显著高于对照组(P < 0.01),与LH430组差异不显著(P > 0.05)。同时,F1I2抗原和沙门菌抗原刺激组极显著增强了水貂脾脏淋巴细胞的增殖(P < 0.01)。本研究可为开发防控水貂出血性肺炎和沙门菌感染的实用新型双价基因工程疫苗提供理论依据。  相似文献   

13.
【目的】制备安全、稳定的非洲猪瘟病毒(African swine fever virus, ASFV)实时荧光定量PCR阳性对照品。【方法】人工合成含ASFV P72、CD2v和MGF360-12L基因片段的核苷酸序列,将3段基因串联插入腺病毒载体PacAd5中,将重组腺病毒质粒和腺病毒骨架质粒共转染293A细胞,利用倒置荧光显微镜观察绿色荧光蛋白(EGFP)的表达情况,培养10 d后用PCR方法检测假病毒包装情况,将制备的假病毒颗粒加冻干保护剂制备成阳性对照品,进行均一性和稳定性试验,并对制备好的阳性对照品进行核酸拷贝数的绝对定量。【结果】重组腺病毒质粒和腺病毒骨架质粒共转染293A细胞24 h后出现点状荧光,转染后7 d细胞有形成岛屿状感染区的趋势,转染后10 d细胞出现固缩和脱落等明显细胞病变,收获的假病毒液经PCR检测和测序鉴定,结果显示,能扩增出大小约2 400 bp的阳性条带且测序序列与插入片段一致。均一性试验显示,阳性对照品Ct值的变异系数<1%,表明均一性良好;加速热稳定性试验显示,制备的阳性对照品分别经4℃放置7 d、室温(25℃)和37℃处理24 h后仍能保持...  相似文献   

14.
【目的】 了解江苏、江西、安徽地区鸭源大肠杆菌的分布以及致病性情况。【方法】 本研究对江苏、江西、安徽地区的病死鸭进行了鸭源大肠杆菌的分离鉴定,运用PCR结合玻片凝集法测定鸭源大肠杆菌分离株的血清型,并进行了18种毒力基因的PCR检测,随后进行雏鸭致病性试验,并对毒力较强和毒力较弱的菌株进行生长曲线以及半数致死量(LD50)测定。【结果】 本研究共分离鉴定获得鸭源大肠杆菌74株,鉴定为O1、O2、O18、O78血清型的分别有1、2、2和4株,其余均未定型;18种毒力基因鉴定结果表明,ibeB、yijp、OmpAmat基因检出率分别为97.3%、97.3%、95.95%和90.54%。动物致病性试验结果表明,经107 CFU/只攻毒后,74株分离株均引起雏鸭不同程度发病,但仅有2株对雏鸭致死率≥50%。生长曲线测定结果表明,2株强毒株与2株弱毒株的生长速度无显著差异(P>0.05),2株强毒株的LD50分别为104.75和107.375 CFU。【结论】 本研究分离的74株鸭源大肠杆菌O1、O2、O18和O78型仅占12.16%,毒力基因谱分布广泛,但仅有2株毒力较强,该研究为鸭源大肠杆菌病的预防控制以及研究血清型、毒力基因与致病性之间的相互关系奠定基础。  相似文献   

15.
【目的】 探究大肠杆菌噬菌体BP16对O2血清型禽致病性大肠杆菌感染引起的鸡大肠杆菌病的防治效果, 以及噬菌体BP16的最佳治疗剂量。【方法】 将O2血清型禽致病性大肠杆菌新鲜培养物稀释成5×1010、5×109、5×108、5×107和5×106 CFU/mL 5个浓度梯度, 以测定禽致病性大肠杆菌的半数致死量(LD50), 确定其感染剂量; 选取常用的对革兰阴性菌有抑菌或杀菌作用的药敏纸片进行药敏试验, 筛选出阳性对照药物; 经无菌试验和安全性试验确定噬菌体裂解液的无菌性及安全性, 用于后续试验。将80只雏鸡随机分为5个试验组与3个对照组, 试验组在雏鸡攻毒前后不同时间腹腔注射大肠杆菌噬菌体BP16, 3个对照组分别腹腔注射氟苯尼考、大肠杆菌菌液、生理盐水, 其余条件一致, 连续饲养7 d, 记录雏鸡的死亡率, 评价大肠杆菌噬菌体BP16对大肠杆菌人工感染试验鸡的防治效果。【结果】 O2血清型大肠杆菌的LD50为1.5×108 CFU/mL, 筛选出氟苯尼考作为阳性对照药物, 噬菌体裂解液中无菌, 噬菌体悬液对雏鸡安全, 可用于后续防治试验。雏鸡感染大肠杆菌前6 h使用噬菌体能有效预防大肠杆菌病, 在感染同时至感染后6 h内使用噬菌体, 能有效治疗大肠杆菌病, 且噬菌体治疗效果优于氟苯尼考; 当大肠杆菌攻毒剂量为1.5×108 CFU时, 噬菌体剂量为1.5×109 PFU时治疗效果为最佳。【结论】 大肠杆菌噬菌体BP16对大肠杆菌病具有防治作用, 本研究为进一步应用噬菌体防治大肠杆菌病及开发大肠杆菌噬菌体制剂提供了科学依据。  相似文献   

16.
【Objective】 This study was aimed to verify whether the NP protein of Bovine parainfluenza virus type 3 (BPIV3) could enhance the immune effect of BPIV3 inactivated vaccine【Method】 The antigenicity of the protein encoded by NP gene was analyzed by bioinformatics softwares,and the antigenic region was screened.The truncated NP gene sequence of BPIV3 was amplified by PCR and connected to pET-32a(+) plasmid.Then the high-purity BPIV3 NP protein was obtained by E.coli prokaryotic expression system and Ni affinity chromatography.It was confirmed by Western blotting.BPIV3 was inactivated with 0.3% formaldehyde and mixed with Freund's adjuvant 1:1 to prepare inactivated vaccine.Eight New Zealand White rabbits were randomly divided into four groups with two rabbits in each group,including inactivated vaccine group,NP protein group,inactivated vaccine and NP protein mixed group and control group.Blood samples were collected before and every 7 days after immunization.The levels of specific antibodies and neutralizing antibodies in New Zealand White rabbits of the four groups were measured and compared by indirect ELISA and virus neutralization test.【Result】 DNAStar analysis showed that the average antigen index of amino acid region 193-368 of NP protein was 0.4-1.7,and the hydrophilic index was 0-1.5,which proved that this region had strong antigenicity and hydrophilicity.The NP gene was amplified by PCR and the recombinant expression vector was constructed.Gene sequencing showed that the recombinant expression vector was consistent with the expected results.The results of SDS-PAGE showed that NP protein was highly expressed with a molecular weight of 50 ku and expressed in the form of inclusion body.Western blotting showed that the expressed protein had strong reactivity.The results of ELISA showed that 28 days after immunization,the specific antibody titer of the control group was 0,and the specific antibody titers of inactivated vaccine group,NP protein group and inactivated vaccine and NP protein mixed group reached 1:211,1:217 and 1:218,respectively.The results of virus neutralization test showed that 28 days after immunization,the neutralizing antibody titer of the control group was 0,and the neutralizing antibody titers of inactivated vaccine group,NP protein group and inactivated vaccine and NP protein mixed group were 1:23.32,1:24.48 and 1:24.98,respectively.【Conclusion】 BPIV3 NP protein could enhance the immune effect of BPIV3 inactivated vaccine.Adding NP protein to the inactivated vaccine could be used as a new vaccination method of BPIV3 inactivated vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号