首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 953 毫秒
1.
从广东省不同猪场分离到4株H3N2亚型猪源流感病毒A/Swine/Guangdong/01/2004、A/Swine/Guang-dong/02/2004、A/Swine/Guangdong/03/2004、A/Swine/Guangdong/04/2004.根据GenBank公布的H3N2亚型猪源流感病毒的HA基因序列,设计1对引物,运用RT-PCR方法扩增四株病毒的HA基因,并进行测序和分析.同源性分析和遗传进化分析表明本实验的4株H3N2亚型SIV HA基因核苷酸序列同源性为99.8%~99.9%,在遗传进化树中均位于同一分支上.与参考毒株的比较分析表明,4个毒株与WHO推荐的2001-2004年北半球H3N2亚型流感疫苗株A/Moscow/10/99 HA基因的核苷酸序列同源性最高为99.4%~99.5%,4个毒株与A/Moscow/10/99 HA基因在遗传进化树中位于同一个小分支上.氨基酸序列比较发现,4个毒株HA基因裂解位点处的氨基酸序列均为PEKQTR↓G,4个毒株推导的氨基酸序列中均有11个糖基化位点,4个毒株HA蛋白226位受体结合位点(RBS)处氨基酸均为异亮氨酸(Ⅰ).4个毒株HA基因的氨基酸序列、受体结合位点以及糖基化位点均与A/Moscow/10/99相应的氨基酸序列一致.本试验的4株H3N2亚型猪源流感病毒的HA基因属于以A/Moscow/10/99为代表的近代类人H3N2亚型流感病毒,在一定程度上揭示了广东省H3N2亚型猪流感病毒HA基因进化与流行情况.  相似文献   

2.
用RT-PCR方法扩增了H9N2亚型猪流感病毒河南株(Swine/Henar/Y1/09)和H9N2亚型猪流感病毒上海株(Swine/Shanghai/Y1/09)的8个基因片段,进行测序分析.结果表明,这两株猪流感病毒HA基因长度均为1701 bp,编码566个氨基酸,HA切割位点序列均为R-S-S-R-G,属非高致病性毒株;这两个毒株的HA蛋白均有8个潜在的糖基化住点.两个分离株的NA基因长度为1401 bp,编码467个氨基酸,这两个毒株均在茎区63、64、65位发生氨基酸缺失.两株猪流感病毒HA基因的同源性为96.6%,NA基因的同源性为98.6%.两株毒株的8个基因片段系统发生树分析表明它们均为重组体,与2008年上海地区健康鸡群中分离的H9N2亚型毒株(Ck/Shanghai/Y 1/2008)8个基因片段均分别属于同一个基因群.  相似文献   

3.
采用RT-PCR技术对分离的H1N1亚型猪流感病毒的HA基因进行了扩增,将获得的PCR产物与pMD18-T载体连接,进行序列测定.同源性分析结果表明.分离毒株与其他H1N1亚型猪流感病毒的HA基因核苷酸同源性为70.7%~90.8%,与A/swine/Zhejiang/1/2007的同源性最高,与其他毒株的同源性相对较低.系统进化树分析结果表明.山东分离株的HA基因与欧洲谱系猪流感病毒进化关系最近,证明该分离株可能来源于北美谱系和欧亚谱系猪流感病毒的重组.  相似文献   

4.
从有肺炎症状的病猪中分离到1株H9N2亚型猪流感病毒(SIV)A/Swine/Shandong/1/02,对其进行了全病毒基因序列分析。结果表明,该毒株8个基因片段的核苷酸序列均来自禽流感病毒(AIV),与我国目前家禽中流行的H9N2亚型AIV毒株具有很高的同源性,与A/Duck/Hong Kong/Y280/97(H9N2)的同源性为94.1%~98.9%,与A/Chicken/Beijing/1/94(H9N2)的同源性为94.5%~98.2%;推导的其血凝素(HA)裂解位点处的氨基酸序列为P—A-R—S-S-R,完全符合H9亚型AIV欧亚分支中的类A/Chicken/Beijing/1/94亚分支的特征;基因分析结果表明,该分离株的所有基因片段均来源于H9N2亚型AIV,它可直接感染猪,并导致发病,但它并未在猪体内发生重组。  相似文献   

5.
采用RT-PCR技术对分离的H1N1亚型猪流感病毒的HA基因进行了扩增,将获得的PCR产物与pMD18-T载体连接,进行序列测定。同源性分析结果表明,分离毒株与其他H1N1亚型猪流感病毒的HA基因核苷酸同源性为70.7%~90.8%,与A/swine/Zhejiang/1/2007的同源性最高,与其他毒株的同源性相对较低。系统进化树分析结果表明,山东分离株的HA基因与欧洲谱系猪流感病毒进化关系最近,证明该分离株可能来源于北美谱系和欧亚谱系猪流感病毒的重组。  相似文献   

6.
从1株H3N2亚型猪流感病毒(SIV)中提取RNA,用RT-PCR方法扩增了其HA基因的全长cDNA片段,克隆后测定其核苷酸序列,并推导了相应的氨基酸序列.结果,扩增的H3N2亚型SIV HA基因长度为1 701个核苷酸,共编码566个氨基酸.核苷酸序列与已发表的中国香港、中国大陆、美国及欧洲分离的H3亚型毒株相近,核苷酸和氨基酸序列相似性均在97%以上,同属H3亚型.其HA1、HA2之间切割位点序列为PSIQSR↓G,从分子水平推论,属于非高致病力毒株.其推导的氨基酸序列中有8个糖基化位点,7个位于HAl基因的第8、22、38、63、126、165、285位点,1个位于HA2基因的154位点.研究数据已提交至GenBank,并申请到一个登录号EF569597.研究结果为我国流感病毒基因库的建立、流感疫情的监测和防制提供了理论依据和技术资料储备.  相似文献   

7.
H1N1亚型猪流感病毒中国分离株血凝素基因分子演化的研究   总被引:10,自引:0,他引:10  
对2001年中国华南及东北地区的15株H1N1亚型猪流感病毒(SIV)分离株的血凝素(HA)基因进行了序列测定和分析,并绘制了进化树.研究结果表明,15株H1N1 SIV和HA基因核苷酸全长为1 778bp,共编码566个氨基酸;而且,15株H1N1亚型SIV的HAI蛋白在10、11、23、87、287位都存在高度保守的糖基化位点,此外,在276位多了一个"-NTT-"糖基化位点,与参考毒株SW/IW/93/01一致,这可能是近期H1N1亚型SIV的一个分子特征.本研究进一步发现,15株H1N1亚型SIV的HA基因切割位点氨基酸组成为IPSIQSR↓G,具有非高致病力毒株分子特征;而其受体结合位点在HA蛋白上第226位是Q,第228位是G,可能具有感染禽的潜力.经同源性比较,15株H1N1亚型SIV的HA基因与古典型H1N1猪谱系中的WIS/4754/94的同源性相对最高,核苷酸和氨基酸序列同源性分别达到95.7%~96.1%和96.5%~97.2%.由同源性比较结果和进化树分析可见,15株H1N1亚型SIV的HA基因皆属于古典型H1N1猪谱系.  相似文献   

8.
禽流感病毒血凝素(HA)和神经氨酸酶(NA)是病毒粒子表面抗原,是亚型划分的重要依据。从云南分离的H9N2亚型禽流感病毒感染鸡胚尿囊液中提取总RNA,采用特异性引物经RT-PCR分别扩增云南毒株10个HA和9个NA基因,纯化后克隆至pMD18-T载体,并对其进行测序。序列比对及系统发育分析结果表明:云南H9N2毒株HA基因核苷酸序列同源性为95.0%~99.7%;NA基因核苷酸序列同源性为86.2%~99.6%。在进化分枝中HA基因均属于欧亚分枝的类CBJ194亚分枝,与CBJ194的核苷酸序列同源性为92.0%~99.1%,NA基因属于CK/BJ/1/94和QaHKG1/97两个分枝。云南毒株HA裂解位点结构具有低致病性病毒分子特征;HA受体结合位点143、145、198和234位氨基酸存在变异,尤其234位氨基酸全部变为L,呈现了人流感受体结合特性。NA糖基化位点61~63、86~88部分毒株存在缺失,部分毒株在143~145位出现新的糖基化位点。  相似文献   

9.
对3株H1N2亚型猪流感病毒(SIV):Sw/GX/17/05、Sw/HN/1/05和Sw/GX/13/06的血凝素(HA)、核蛋白(NP)、神经氨酸酶(NA)、基质蛋白(M)和非结构蛋白(NS)基因进行克隆和序列分析.结果显示:3株分离毒株HA、NP、NA、M和NS基因之间核苷酸同源性分别为91.3%~98.0%、98.4%~98.8%、97.4%~98.3%、98.8%~99.8%和98.1%~98.4%.遗传进化分析显示:分离毒株与美国分离的三源基因重排H1N2 SIV具有较近的亲缘关系;在HA、NP、M和NS基因进化树中,3株分离毒株均位于古典H1N1亚型SIV群,在NA基因进化树中,3株分离毒株则位于人流感病毒群.HA和NA基因推导氮基酸序列分别与代表毒株古典H1N1 SIV A/swine/Maryland/23239/1991(H1N1)和人H3N2流感病毒A/Buenos Aires/4459/96(H3N2)比较分析显示:HA(95.4%~96.1%)和NA(96.6%~97.2%)具有较高的氨基酸同源性;糖基化位点、抗原位点和受体结合位点(HA)处氨基酸存在一定的差异,这些氨基酸差异对病毒生物学特性的影响有待于进一步研究.  相似文献   

10.
采集钦州活禽交易市场的鸡气管和泄殖腔的棉拭予样品,用H9亚型分型引物进行PCR初步筛选,阳性样品经SPF鸡胚尿囊腔接种分离病毒,通过RT-PCR方法扩增HA基因,并将其克隆到pMD—18T载体后进行序列测定和分析。结果表明,获得1株H9亚型禽流感病毒命名为:A/Chicken/Guangxi/qz40/2009(简称qz40)。测序结果表明qz40的HA基因片段全长1683bp,编码560个氨基酸;序列同源性比较结果表明,该毒株与参考毒株的核苷酸序列同源性为82.8%.99.9%,推导氨基酸同源性为87.5%.99.6%;HA基因的裂解位点氨基酸顺序为RSSRIGLF,为低致病性毒株;含有7个潜在的N-糖基化位点,其中5个位于HAl部分、2个位于HA2部分;基于H9亚型HA基因的进化树分析表明,qz40株属于欧亚种系的A/Chicken/Beijing/1/94(Ck/Bei—like)群系。  相似文献   

11.
为了建立适用于临床诊断的H1N1亚型猪流感病毒快速检测方法,本研究根据GenBank已登录的H1N1亚型猪流感病毒HA和NA基因序列设计RT-PCR扩增引物,以H1N1亚型猪流感病毒、H3N2亚型猪流感病毒、猪瘟病毒和猪繁殖与呼吸综合征病毒为试验对照,通过优化RT-PCR反应条件和反应体系,建立了H1N1亚型猪流感病毒HA和NA基因双重RT-PCR定型检测方法。同时,运用H1N1亚型猪流感病毒血凝和血凝抑制试验方法和本研究建立的方法对165份猪病料样品进行了对比验证。结果表明,本研究建立的H1N1亚型猪流感病毒双重RT-PCR具有良好的特异性、敏感性、重复性,所扩增的目的基因片段大小分别为428 bp和678 bp左右,可检出最小基因组RNA浓度为2.9×10-5μg/μL。本研究建立的方法和H1N1亚型猪流感病毒血凝和血凝抑制试验方法均从同一份猪肺脏样品中检测出H1N1亚型猪流感病毒,其余样品中均未检出H1N1亚型猪流感病毒,两种方法符合率为100%。本研究建立的方法适用于H1N1亚型猪流感病毒双基因定型检测,可在H1N1亚型猪流感病毒流行病学调查和临床诊断中应用。  相似文献   

12.
猪源H9N2亚型流感病毒的分离鉴定和遗传进化分析   总被引:1,自引:0,他引:1  
2008年10月~2009年3月采集剖检病死猪喉拭样品41份,从中分离鉴定了2株H9N2亚型猪流感病毒,对其进行部分生物学特性的研究、全基因测序和遗传演化分析,发现血凝素(hemagglutinin,HA)蛋白335~338的裂解位点上,A/Swine/Yangzhou/1/08为RSNR,A/Swine/Taizhou/5/08为RSSR,均为典型低致病性禽流感病毒的特征性序列。2株病毒的HA、神经氨酸酶(neuraminidase,NA)、核衣壳蛋白(nucleocapsid protein,NP)、非结构蛋白(nonstructural protein,NS)、血清前白蛋白(prealbumin,PA)和多聚酶蛋白(polymerase protein1,PB1)基因均来源于A/Chicken/Shanghai/F/98,基质蛋白(matrix,M)基因与A/Swine/Yangzhou/1/08的PB2基因来源于A/Quai/Hong Kong/G1/97,值得注意的是A/Swine/Taizhou/5/08的PB2基因虽然可能来源于A/Chicken/Shanghai/F/98但与A/environment/Hunan/1-35/2007(H5N1)的高度同源,生物学特性试验也表明A/Swine/Taizhou/5/08比A/Swine/Yangzhou/1/08毒力强。  相似文献   

13.
H3N2亚型猪流感病毒HA基因序列测定及抗原性分析   总被引:5,自引:3,他引:2  
采用RT-PCR技术对4株H3N2亚型猪流感病毒的HA基因进行了扩增,将获得的PCR产物分别与pMD18-T克隆载体连接,进行序列测定。测序结果显示,4个毒株均含有完整的开放阅读框,并且均未发现核苷酸插入或缺失现象;分离毒株间核苷酸同源性为99.4%~99.7%,氨基酸同源性为98.2%~99.3%。同源性分析表明,4个毒株与2003年的猪流感病毒广东分离株有很高同源性(均在99%以上),说明近段时间我国H3N2亚型的猪流感病毒变异不大,重组的频率不是很高,同时又与人流感病毒香港分离株有较高的同源性(均为99.4%)。交叉血凝抑制试验显示,S3株与其他3毒株抗原性差异明显。鉴于猪在流感病毒传播与复制间的特殊地位,应密切监测猪流感。  相似文献   

14.
利用RT-PCR方法扩增猪流感病毒A/Swine/Henan/11/2005(H1N1)血凝素(HA)基因,克隆于pMD18-T载体进行测序。以pMD18-HA为模板、利用带酶切位点的引物再次扩增HA基因的开放阅读框(ORF),克隆到表达载体pET32a中,经双酶切、测序及PCR鉴定得到阳性重组表达质粒pET-HA,将质粒转化到表达宿主菌BL21(DE3)中,经终浓度为1 mmol/L的IPTG诱导,SDS-PAGE结果显示,HA蛋白获得了高效表达,经Western-blot检测证实表达产物具有良好的免疫学活性,在间接ELISA中的初步应用表明具有良好的抗原反应性。本研究为以重组HA蛋白为抗原建立H1亚型猪流感抗体的ELISA检测方法奠定了基础。  相似文献   

15.
猪流感病毒H1N1广东分离株HA基因的克隆与进化分析   总被引:1,自引:1,他引:0  
采用常规的血清学试验和特异性RT-PCR,从广东不同地区猪场分离鉴定出8株H1N1亚型猪流感病毒(SIV)。用流感病毒血凝素(HA)基因通用引物扩增了8株病毒的血凝素(HA)基因,经克隆测序,HA基因全长1 757 bp,编码566个氨基酸。8个毒株的HA基因推导氨基酸序列分析表明,均含有8个潜在的N糖基化位点,且糖基化位点相同,其HA1、HA2之间切割位点序列为IPSIQSR↓G,从分子水平推论,此8株H1N1 SIV均属于非高致病性毒株。同源性分析表明,此8株病毒的氨基酸序列与经典SIV之间的同源性在92.3%~94.7%之间;与2009年甲型H1N1流感病毒同源性在80.4%~92.4%之间;与欧洲类禽SIV分离株同源性在80.4%~84.1%之间。进化关系表明,该8株SIV与A-swine-Shanghai-3-2005-H1N1同处一分支,与2009年甲型H1N1流感病毒和经典SIV分离株亲缘关系较近,与欧洲类禽SIV分离株亲缘关系较远。  相似文献   

16.
DNA疫苗的免疫效果与抗原基因的表达量及表达抗原的免疫原性有直接关系。为了提高猪流感病毒(Swine influenza virus,SIV)HA基因DNA疫苗的表达量,增强其免疫效果,本研究通过人工合成的方法将H1亚型猪流感病毒A/Swine/Guangdong/1/01(H1N1)的HA基因密码子优化为猪体内偏嗜性密码子optiHA,同野生型A/Swine/Guangdong/1/01(H1N1)的HA基因分别与真核表达载体PCAGGS连接构成重组质粒PCAGGS—optiHA和PCAGGS—HA,然后分别转染293T细胞,48h后采用间接免疫荧光的方法检测Ⅲ基因的瞬时表达蛋白情况。将质粒PCAGGS—HA、PCAGGS—optiHA以100μg/只的剂量,采用后腿肌肉多点注射的方式,免疫6-8周龄雌性BALB/c小鼠,同时设立空载体PCAGGS对照。共免疫3次,每次间隔2周,三免2周后对每组以10^3.87 EID50的A/Swine/Guangdong/1/01(H1N1)进行攻毒。采用ELISA、血凝抑制试验、细胞因子检测和肺组织病毒含量测定等实验评价这两种DNA疫苗的免疫效果。结果表明,HA基因密码子优化的DNA疫苗可显著提高体液免疫和细胞免疫的应答水平,攻毒后免疫组PCAGGS—optiHA的保护效力明显高于免疫组PCAGGS—HA。这一结果为进一步研究和设计有效的SIVDNA疫苗奠定了基础。  相似文献   

17.
18.
Beginning in April 2009, a novel H1N1 influenza virus caused acute respiratory disease in humans, first in Mexico and then around the world. The resulting pandemic influenza A H1N1 2009 (pH1N1) virus was isolated in swine in Canada in June 2009 and later in breeder turkeys in Chile, Canada, and the United States. The pH1N1 virus consists of gene segments of avian, human, and swine influenza origin and has the potential for infection in poultry following exposure to infected humans or swine. We examined the clinical events following the initial outbreak of pH1N1 in turkeys and determined the relatedness of the hemagglutinin (HA) gene segments from the pH1N1 to two H1N1 avian influenza (AI) isolates used in commercial turkey inactivated vaccines. Overall, infection of turkey breeder hens with pH1N1 resulted in -50% reduction of egg production over 3-4 weeks. Genetic analysis indicated one H1N1 AI vaccine isolate (Alturkey/North Carolina/17026/1988) contained approximately 92% nucleotide sequence similarity to the pH1N1 virus (A/Mexico/4109/2009); whereas, a more recent AI vaccine isolate (A/ swine/North Carolina/00573/2005) contained 75.9% similarity. Comparison of amino acids found at antigenic sites of the HA protein indicated conserved epitopes at the Sa site; however, major differences were found at the Ca2 site between pH1N1 and A/ turkey/North Carolina/127026/1988. Hemagglutinin-inhibition (HI) tests were conducted with sera produced in vaccinated turkeys in North Carolina to determine if protection would be conferred using U.S. AI vaccine isolates. HI results indicate positive reactivity (HI titer > or = 5 log2) against the vaccine viruses over the course of study. However, limited cross-reactivity to the 2009 pH1N1 virus was observed, with positive titers in a limited number of birds (6 out of 20) beginning only after a third vaccination. Taken together, these results demonstrate that turkeys treated with these vaccines would likely not be protected against pH1N1 and current vaccines used in breeder turkeys in the United States against circulating H1N1 viruses should be updated to ensure adequate protection against field exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号