首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  6篇
植物保护   1篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 328 毫秒
1
1.
2.
Cysteine sulfoxides and alliinase activity of some Allium species   总被引:17,自引:0,他引:17  
The flavor precursors of 17 species belonging to the Alliaceae family were analyzed by HPLC, and results were evaluated with respect to the classification of species into their genus, subgenus, and section. Identification and quantification of these precursors were carried out by synthetic and natural reference materials. In addition, nine of these species were investigated in terms of their alliinase activity. Alliinase (EC 4.4.1.4) catalyzes the conversion of odorless (+)-S-alk(en)yl-L-cysteine sulfoxides into volatile thiosulfinates. Cysteine sulfoxides as well as alliinase activity were found in all investigated samples, and (+)-S-methyl-L-cysteine sulfoxide was most abundant. (+)-S-Propyl-L-cysteine sulfoxide was detected in only a few, not closely related, species. Analysis of the crude protein extract of nine species gave evidence that alliinase activities of samples were similar in terms of pH and temperature optimum, K(M) value, and substrate specificity. For all investigated protein extracts, the highest specific alliinase activity was found for (+)-S-(2-propenyl)-L-cysteine sulfoxide (alliin). The substrate specificity of these enzymes was not related to relative abundance of the cysteine sulfoxides. However, SDS-PAGE yielded some significant differences among species in terms of their total protein compositions. Species belonging to different subgenera exhibited a specific protein pattern with molecular masses between 13 and 35 kDa.  相似文献   
3.
Sulfur-containing compounds of ramson (Allium ursinum L.) are responsible for its traditional use in terms of culinary and medicinal purposes. Leaves and bulbs were investigated for their contents of cysteine sulfoxides (volatile precursors) as well as volatile compounds released from minced plant material. Plants were analyzed during the whole vegetation period, focused on the months from March to June. Additionally, within the dormancy period bulbs were analyzed again and alliinase activity was determined. The pattern of volatile compounds was analyzed both by SPME/GC-MS and by SDE/GC-MS. Compared to each other, SDE exhibited a wider spectrum of detectable volatile compounds. The quality and quantity of volatiles significantly depended on the time of harvest. The highest amounts of volatile precursors can be gained in March and April, shortly before flowering time (up to 0.4% of total cysteine sulfoxides). The main cysteine sulfoxides were alliin and isoalliin. It has been found that alliinase of A. ursinum exhibited properties similar to those of alliinase of garlic (Allium sativum L.), but differing in terms of substrate specificity.  相似文献   
4.
Interspecific hybridization between wild and cultivated species of the genus Allium has been performed to generate plant material possessing biochemical properties of both parental plants. These cross-breeding experiments should lead to Allium plants with higher amounts of valuable constituents. The chemical characterization of interspecific hybrids between A. cepa and A. kermesinum is described on the basis of their sulfur-containing constituents and secondary metabolites. In addition, the hybrid character has been proven by random amplified polymorphic DNA (RAPD) analysis of the progenies obtained from the crosses. It has been shown that the distribution of the cysteine sulfoxides as well as the volatile secondary metabolites in the hybrids is not uniform. The profiles are mainly determined by the paternal wild species A. kermesinum. It has been ascertained that the gas chromatography profiles of the hybrids show increasing amounts of unsymmetrical substituted oligosulfides, which are known to be physiologically active substances. On the basis of statistical calculations, three different types of hybrids can be separated. The chemical analysis of cysteine sulfoxides and volatile sulfur-containing substances is shown to be a useful tool for breeding purposes as it allows an effective selection with regard to optimal distribution and amount of valuable constituents.  相似文献   
5.
Marasmin, which is especially known from the two South African species Tulbaghia alliacea and Tulbaghia violacea , but was also described for the garlic mushroom Marasmius alliaceus , is the precursor of the thiosulfinate marasmicin. Marasmicin has attracted considerable attention because of its antifungal and tuberculostatic activities. However, many Allium species of the subgenus Melanocrommyum, especially Allium suworowii , are also very rich in marasmin. A. suworowii revealed concentrations of marasmin up to 1.6%, related to the fresh weight of bulbs, and up to 3.0%, related to air-dried fruiting bodies, of the corresponding γ-glutamylmarsmin was found in M. alliaceus. Both species show much higher amounts of marasmin as Tulbaghia and could be considered as natural sources for the isolation of this compound. Further promising Allium species with considerable amounts of marasmin besides other cysteine sulfoxides are Allium stipitatum and Allium altissimum . (R(S),R(C))-Marasmin is typical for the investigated species of the subgenus Melanocrommyum, whereas γ-glutamyl-(S(S),R(C))-marasmin is the only cysteine sulfoxide for the genus Marasmius known until now. Both cysteine sulfoxides were isolated and described as o-phthaldialdehyde (OPA) derivatives. Furthermore, the cysteine sulfoxides methiin, propiin, S-(2-pyrrolyl)-cysteine sulfoxide, eventually S-(2-pyridyl)-cysteine sulfoxide and S-(2-pyridyl)-L-cysteine N-oxide were found.  相似文献   
6.
Three new sulfur-containing compounds were identified in Allium L. species belonging to the subgenus Melanocrommyum as the first examples of sulfur-containing pyrrole derivatives in nature. Some of these species are traditionally used in Southwest and Central Asia as vegetables and herbal drugs. A hypothetical biogenetic scheme is proposed in which L-(+)- S-(3-pyrrolyl)cysteine sulfoxide is enzymically degraded. The resulting 2-lactyl-3'-pyrrolyl sulfoxide is condensed readily to the red pigment 3,3'-dithio-2,2'-dipyrrole. All compounds are chemically unstable, rendering the analysis extremely difficult. Correlation NMR in combination with diffusion NMR allowed the identification of these low molecular weight compounds. For the first time, the compounds involved in the coloring process of Allium plant material have been identified from native plant material.  相似文献   
7.
Various Allium hybrids, obtained by the crossbreeding of Allium cepa (onion) as the mother plant and six taxonomically distant wild species obtained by embryo rescue, were investigated with special respect to their individual profiles of cysteine sulfoxides as well as enzymically and nonenzymically formed aroma substances. Alliinase (EC 4.4.1.4) catalyzes the conversion of odorless (+)-S-alk(en)yl-L-cysteine sulfoxides into volatile thiosulfinates. These thiosulfinates were converted to a variety of sulfides by steam distillation. SPME-gas chromatography (GC) and high-performance liquid chromatography (HPLC) used for the analysis of aroma components and their precursors permitted a high sample throughput, so that numerous gene bank accessions and Allium breeding materials were analyzed within a comparatively short time. Cysteine sulfoxides as well as alliinase activity were found in all investigated samples at different levels, but (+)-S-methyl-L-cysteine sulfoxide (methiin) was the most abundant sulfoxide present. (+)-S-(trans-1-Propenyl)-L-cysteine sulfoxide (isoalliin) is typical for onion and was found in all investigated hybrids. The pattern of the other cysteine sulfoxides depended strongly on the parent plants used. The profile of aroma components corresponded with the related pattern of aroma precursors (cysteine sulfoxides). Successful hybridization was proven by randomly amplified polymorphic DNA analysis. Together with these established marker techniques, HPLC and SPME-GC analysis provide support to breeding projects designed to improve the health and aroma properties of Allium hybrids.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号